
THESIS

A RAPIDLY RECONFIGURABLE,
 APPLICATION LAYER, VIRTUAL

ENVIRONMENT NETWORK PROTOCOL

by

Steven Walter Stone

 June 1996

 Thesis Co-Advisors: Michael Zyda
 John Falby

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/ MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Stone, Steven Walter

June 1996 Master’s Thesis

Unclassified Unclassified ULUnclassified

123

 A RAPIDLY RECONFIGURABLE, APPLICATION LAYER,
VIRTUAL ENVIRONMENT NETWORK PROTOCOL

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited.

The current Distributed Interactive Simulations (DIS) Protocol has a limited ability to support real-time, simulated
engagements of more than 1000 entities because of its excessive use of network resources. It also lacks the extensibility to add
new protocol data units to support new simulation requirements. To solve these problems it is necessary to design and
implement a rapidly reconfigurable network protocol that can be easily changed and distributed to all entities in a large-scale
simulation. This protocol must be highly flexible and allow for the optimization of data content during execution.

The approach used was to design and build a rapidly reconfigurable network protocol and the tools necessary to use it.
This was accomplished in four phases. First, a protocol using the concepts of Self-defined Messages with Multiple
Presentations was developed. Second, a formal grammar to describe the protocol was designed. Third, an existing protocol
development tool, the DIS Protocol Support Utility, was modified to use the new protocol and grammar. Fourth, the protocol
was tested to determine its effect on network resource utilization.

As a result of this effort, a network protocol for distributed simulations that can be optimized at run-time and easily
modified has been developed. Testing shows that the protocol can reduce the network bandwidth necessary for a large-scale
distributed simulation by up to 70%.

Distributed Interactive simulations, networks, communications protocols

ii

iii

Approved for public release; distribution is unlimited

A RAPIDLY RECONFIGURABLE,
APPLICATION LAYER, VIRTUAL

ENVIRONMENT NETWORK PROTOCOL

Steven Walter Stone
Captain, United States Army

B.S., United States Military Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1996

Author:
Steven Walter Stone

Approved by:
Michael Zyda, Thesis Co-Advisor

John Falby, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

iv

v

ABSTRACT

The current Distributed Interactive Simulations (DIS) Protocol has a limited ability to

support real-time, simulated engagements of more than 1000 entities because of its

excessive use of network resources. It also lacks the extensibility to add new protocol data

units to support new simulation requirements. To solve these problems it is necessary to

design and implement a rapidly reconfigurable network protocol that can be easily changed

and distributed to all entities in a large-scale simulation. This protocol must be highly

flexible and allow for the optimization of data content during execution.

The approach used was to design and build a rapidly reconfigurable network protocol

and the tools necessary to use it. This was accomplished in four phases. First, a protocol

using the concepts of Self-defined Messages with Multiple Presentations was developed.

Second, a formal grammar to describe the protocol was designed. Third, an existing

protocol development tool, the DIS Protocol Support Utility, was modified to use the new

protocol and grammar. Fourth, the protocol was tested to determine its effect on network

resource utilization.

As a result of this effort, a network protocol for distributed simulations that can be

optimized at run-time and easily modified has been developed. Testing shows that the

protocol can reduce the network bandwidth necessary for a large-scale distributed

simulation by up to 70%.

vi

vii

TABLE OF CONTENTS
I. INTRODUCTION .. 1

A. BACKGROUND ...1
B. MOTIVATION ..2
C. SUMMARY OF CHAPTERS ...2

II. SIMNET AND DISTRIBUTED INTERACTIVE SIMULATIONS 5
A. OVERVIEW ..5
B. SIMNET ..5
C. DIS PROTOCOL ...7

 1. Protocol Data Units ...8
 2. The Future of DIS ...10

III. PROBLEMS WITH THE DIS PROTOCOL ... 11
A. OVERVIEW ..11
B. NATIONAL RESEARCH COUNCIL RECOMMENDATIONS11
C. INSTITUTE FOR SIMULATION AND TRAINING GOALS11
D. AREAS REQUIRING IMPROVEMENT IN DIS ..12

 1. Network Bandwidth Requirements ...12
 2. New Network Technologies ..13
 3. Non Department of Defense Use ..13
 4. Meeting Differing Demands ...14
 5. New Requirements for Military Simulations14
 6. Summary ...15

IV. PREVIOUS WORK ... 17
A. OVERVIEW ..17
B. PDU PROFILES ..17

 1. Overview ...17
 2. Assessment ..18

C. OPTIONAL PDU FIELDS ..19
 1. Overview ...19
 2. Existing PDU Field Option ...19
 3. Insertion of a New Option Field ...20
 4. Assessment ..20

D. SELF-DESCRIBING PDUS ...21
 1. Overview ...21
 2. Self-Defined Messages with Multiple Presentations21
 3. Self-Defined Messages ...22
 4. Multiple Presentations ...23
 5. Dictionaries ...23

a. Data Item Dictionary ..23
b. Presentation Dictionary ..24
c. Exercise Profile ..25
d. Message Template ...26
e. Data Item Template ..28

viii

 6. Advantages of SDM/MP ...29
E. PROTOCOL SUPPORT UTILITY ...30

 1. Overview ...30
 2. Protocol Support Utility Grammar ..31
 3. Protocol Support Utility ..35

a. Lexical Analysis ...35
b. Internal Data Tables and Structures ...36
c. User Interface ...37
d. Grammar Editors ..37
e. Source Code Generation ..37

 4. Advantages of the Protocol Support Utility ..38
F. SUMMARY ...38

V. DESIGN OF A RAPIDLY RECONFIGURABLE PROTOCOL 41
A. INTRODUCTION ...41
B. DESIGN CRITERIA ...42
C. SIMULATION SYSTEM DESIGN ..43

 1. NPSNET-IV ..43
 2. Application Program Interface ..45
 3. OpenNPSNET Architecture ..46

a. Managers ..47
b. Intercom Library and Channels ...49
c. Network Manager ...49

 4. Summary ...51
D. PROTOCOL SPECIFICATION GRAMMAR ..51

 1. Introduction ...51
 2. Grammar Definition ..52
 3. Lexical Analyzer ...56
 4. Internal Data Tables and Structures ..57

a. Symbol Table ...57
b. PDU Table ...58
c. Data Item Table ..58
d. Class Table ...58

E. SOURCE CODE GENERATION ...58
F. SUMMARY ...60

VI. EXPERIMENTAL RESULTS ... 61
A. SOURCE CODE TESTING ..61
B. TEST RESULTS ...64

VII. FINDINGS AND FUTURE RESEARCH ... 65
A. FINDINGS ...65
B. AREAS FOR FUTURE RESEARCH ...67

APPENDIX A. PROTOCOL SUPPORT UTILITY INSTRUCTIONS69
APPENDIX B. PROTOCOL GRAMMAR SOURCE CODE ...75
APPENDIX C. GENERATED SOURCE CODE ..81

ix

LIST OF REFERENCES ..109
INITIAL DISTRIBUTION LIST ...111

x

xi

LIST OF FIGURES

1. SIMNET Vehicle Appearance PDU ..6
2. DIS Entity State PDU ..9
3. Sample PDU Profile...18
4. Data Item Dictionary..24
5. Presentation Dictionary..25
6. Exercise Profile..27
7. Message Template ...28
8. Data Item Template..29
9. Descriptive Grammar Constructs...32
10. Grammar to Data Type Correlation ...33
11. Protocol Utility Grammar ..34
12. NPSNET-IV Architecture..44
13. Application Program / API / Simulation Protocol Relationship..................................46
14. OpenNPNSET Architecture...47
15. Network Manager Architecture ...50
16. Descriptive Grammar Constructs...53
17. Descriptive Grammar Example..55
18. Table Management Functions..57
19. Specification of Base Case ESPDU...62
20. Specification of Test Case ESPDU..63

xii

1

I. INTRODUCTION

A. BACKGROUND

As military weaponry has become more complex the cost of operating that equipment

has increased dramatically. This rise in cost has necessitated new and less costly methods

for training military forces. As the capabilities of computer technology have grown, digital

simulations have become a viable method of training. Early attempts focused on stand

alone simulators for the most costly weapons systems. Flight simulators for military aircraft

were designed to emulate form, fit and function of the aircraft and have become an integral

part of training military pilots. Stand alone simulators have also been developed for ground

combat systems. The Army’s Unit Conduct of Fire Trainer has been in use for over ten

years for training gunnery skills of tank crews. These stand alone simulators have proven

invaluable and have been credited with some of the success of the recent military

operations of the United States. [MAC95a]

However, wars are not fought by a single vehicle. A single tank is not sent into battle.

Military forces are organized into units and employed as a composite mass of personnel,

weapons and supplies. Units are task organized to meet the needs of the commander. Air,

ground and sea weapons systems are combined to provide the commander with all of the

capabilities needed to fight and win the battle. The diversity, size and complexity of such

a force makes it nearly impossible to accurately model it on a single simulator.

A solution to this problem has been the development of distributed, networked

simulations. This technique uses the power of many stand alone simulators and networks

them into a larger more complex environment that is capable of accurately simulating all

of the associated weapons systems. In this manner, the complexity of the overall model is

spread among distributed systems. This approach serves as the basis for the Distributed

Interactive Simulations (DIS) effort. [MAC95a]

2

B. MOTIVATION

As Distributed Interactive Simulations have evolved, so has the requirement for a

robust, flexible network communications protocol that is capable of meeting the growing

needs of the virtual environment community. These network protocols have evolved from

locally created protocols to the SIMNET protocol and now to the Distributed Interactive

Simulation (DIS) Protocol as specified by the IEEE 1278 standard [MAC95a]. While the

DIS standard has been a great leap forward in specifying networked virtual environment

communications, it has not been able to keep up with the rapidly changing uses for

distributed virtual environments. At best the DIS standard has been a compromise

between the competing demands of distributed simulations [MAC95a].

As simulations have become more and more popular for training military forces,

the capabilities demanded of them have increased greatly. Initially used for training single

crews, simulators are now regularly used for training small units and there is an increasing

demand for distributed simulators capable of simulating large units of over one-thousand

systems. Unfortunately, the communications protocols developed for the initial distributed

simulations do not scale up well and lack the flexibility necessary for large-scale

simulations.

As the use of distributed simulations grow, the need for a flexible, reconfigurable

network protocol becomes more apparent. The motivation for this work is to implement a

rapidly reconfigurable, application level protocol for use in distributed simulations and to

use this protocol in experimenting with large scale distributed simulations.

C. SUMMARY OF CHAPTERS

Chapter II provides an overview of the development of the DIS architecture and

communications protocol in term of its history, purpose, objectives and directions. Chapter

III outlines the current limitations with regard to large-scale simulations of the DIS

3

architecture and protocol. Chapter IV presents an overview of previous work in the area of

developing a reconfigurable network protocol. Chapter V discusses the design and

implementation of the rapidly reconfigurable protocol. Chapter VI contains the results of

experiments conducted with the reconfigurable protocol in implementing a large-scale

simulation. Finally, Chapter VII provides a summary of findings, conclusions and

recommendations for future research in this area.

Appendix A contains the instructions for using the Rapidly Reconfigurable Protocol

within NPSNET. Appendix B contains the source listing for the Lexical Analyzer

implementation. Appendix C contains the source code generated by the Protocol Support

Utility for the Entity State Protocol Data Unit.

4

5

II. SIMNET AND DISTRIBUTED INTERACTIVE SIMULATIONS

A. OVERVIEW

The Simulator Networking (SIMNET) and Distributed Interactive Simulations (DIS)

protocols are the most advanced efforts to develop distributed virtual worlds. This chapter

covers the development of the SIMNET protocol, the relationship between SIMNET and

DIS and the DIS protocol.

B. SIMNET

From 1983 to 1989 the Advanced Research Projects Agency (ARPA) developed and

demonstrated the technology necessary to link a large number of manned simulators using

a local area network. Their goal was to develop a realistic simulation network that could be

used to train large numbers of combat vehicle crews in a simulated combat environment.

The result of their efforts was SIMNET, at the time the largest communications network in

any virtual environment. SIMNET allowed up to 300 combat vehicle crews to engage in

mock battle on a simulated battlefield in real time. This was the first successful large

networked virtual environment and is currently in use by the United States Army.

The major components of SIMNET are stand alone vehicle mock ups containing a host

computer and image generator, and a terrain database. The vehicle mock ups are networked

using an Ethernet LAN. This structure has been adapted by many virtual environment users

and is currently used by most DIS applications. SIMNET has three classes of protocols: a

simulation protocol that conveys information between entities, a data collection protocol

for simulation management, and an association protocol to provide transport and session

level services over the Ethernet [MAC95a]. The simulation protocol has a well defined set

of Protocol Data Units (PDUs) that are used to transport information between entities in the

simulation. The vehicle appearance PDU is used to communicate a vehicle’s position,

orientation and status. Figure 1 shows the structure of this PDU. Fire, Indirect Fire,

6

Collision and Impact PDUs are used to identify other common battlefield events

[MAC95a].

SIMNET uses a clever technique of dead-reckoning to reduce the network bandwidth

necessary for the simulation to communicate. Each SIMNET node maintains a ghost model

Field
Size

(bytes)
Vehicle Appearance PDU Fields

6 Vehicle ID Site
Host

Vehicle

1 Vehicle Class Tank, Simple, Static, Irrelevant

1 Force ID Object Type - Distinguished
Other

8 Guises Location - x, y, z

24 World Coordinates

36 Rotation Matrix

4 Appearance

12 Markings Text Field

4 Timestamp

32 Capabilities

2 Engine Speed

2 Stationary bit and padding

24 Vehicle
Appearance

 Variant

Velocity Vector
Turret Azimuth
Gun Elevation

Figure 1. SIMNET Vehicle Appearance PDU [IEEE93]

7

of every other entity in the simulation and maintains a dead-reckoned location and

orientation for each of these entities. The simulator continues to generate the image of each

entity based on the dead-reckoned location until an update is received from that entity. At

that point the ghost entity is updated and dead-reckoning begins again. Each simulator also

contains its own ghost entity and sends out an updated location and orientation when the

difference between its actual location and its ghost’s dead-reckoned location exceeds a

threshold. Updates are also sent every five seconds if the entity has not previously sent an

update. This is done so stationary entities remain visible to the other players.

SIMNET is more than an application level protocol. It incorporates different layers of

the Open Systems Interconnection (OSI) network model thus making it difficult to use on

Local Area Network (LAN) topologies other than Ethernet [MAC95a]. SIMNET does not

use the Transmission Control Protocol / Internet Protocol (TCP/IP) suite and sits on top of

the device driver/ link layer and requires that the process reading/writing SIMNET packets

run with root privilege. SIMNET is also limited to approximately 300 players and could not

be easily expanded to handle more. Although SIMNET was a defacto standard, it is an

incomplete protocol and the problems listed above lead to the development of the DIS

standard[ZES93].

C. DIS PROTOCOL

 Development of the DIS protocol was begun in 1989 and was sponsored by the United

States Army Simulation, Training and Instrumentation Command (STRICOM), ARPA and

the Defense Modelling and Simulation Office (DMSO). DIS was based on SIMNET and

was designed as a man-in-the-loop simulation in which participants interact in a shared

environment from geographically dispersed sites [MAC95a]. The initial objective of the

DIS effort was to develop a standard that provided guidelines for the interoperability of

defense simulations. DIS attempts to provide a basis of interoperability for large scale

virtual environments using a wide variety of different hardware and software platforms.

8

DIS has been adopted by the Institute of Electrical and Electronics Engineers (IEEE) as an

International Standard (IEEE Std 1278-1993).

While the DIS standard adopted many aspects of the SIMNET protocol including its

general principles, terminology and PDU formats, it is intended to overcome the limitations

of SIMNET and include packet definitions not found in SIMNET [DURLACH95]. DIS is

also designed to use the Defense Simulation Internet (DSI), an ARPA project designed to

allow thousands of players to link using real and simulated forces to create a Synthetic

Theater of War (STOW) [DURLACH95]. Another difference between SIMNET and DIS

is that DIS uses the TCP/IP suite of protocols and is thus an application level protocol

which can be used on any network topology that uses TCP/IP.

1. Protocol Data Units

The heart of DIS is a set of protocols that are used to convey messages about entities

and events, via a network, among the simulation nodes that are responsible for maintaining

the status of the entities in the virtual world [DIS94]. Simulation and event information is

conveyed by the twenty-seven PDUs defined by the IEEE 1278 DIS standard. Four of the

PDUs are used for sending information about entity interaction. The other twenty-three are

used for transmitting information on supporting actions, electronic emanations and

simulation control [MAC95a]. DIS PDUs are independent of the network media and

network protocols being used to transmit them and can be used on most of the current

network topologies.

The PDUs used to transmit information about entity interaction are: the Entity State

PDU (ESPDU), the Fire PDU (FPDU), and the Detonation PDU (DPDU). The ESPDU is

used to communicate information about an entity’s current state, including its position,

orientation, velocity and appearance. The ESPDU is the most commonly used PDU and in

most instances it dominates the network traffic [MAC94]. The format of the ESPDU is

shown in Figure 2. The FPDU contains data on any weapons that are fired or dropped. The

9

DPDU is sent when a munition detonates or an entity crashes. The actual structure of each

PDU is very regimented and is explained in full detail in IEEE 1278.

Field Size (bytes) Entity State PDU Fields

12 PDU Header Protocol Version
Exercise ID
PDU Type

Padding
Time Stamp

Length in Bytes

6 Entity ID Site
Application

Entity

1 Force ID

1 Number of Articulation Parameters

8 Entity Type Entity Kind
Domain
Country

Category
Subcategory

Specific
Extra

8 Alternate Entity Type Same information as above

12 Linear Velocity X, Y, & Z (32 bit components)

24 Location X, Y, & Z (64 bit components)

12 Orientation Psi, Theta, Phi (32 bit components)

4 Appearance

40 Dead Reckoning Parameters Algorithm
Other Parameters

Entity Linear Acceleration
Entity Angular Velocity

12 Entity Markings

4 Capabilities 32 Boolean Fields

N * 16 Articulation Parameters Change
ID

Parameter Type
Parameter Value

Figure 2. DIS Entity State PDU [IEEE93]

10

2. The Future of DIS

The IEEE 1278 standard is still an immature protocol and is very much a work in

progress [MAC94]. As the possible uses of Distributed Interactive Simulations grow the

mission of the DIS standard is expanding. The DIS standard will be modified to meet new

roles and will be redefined to increase efficiency [DIS94]. DIS is being envisioned not only

as a tool to establish a synthetic battlefield of distributed simulations, but is also being

examined for use in a wide spectrum of applications. DIS is planned to grow to be able to

handle simulations with 10,000 to 300,000 players. Although DIS has been made into an

international standard, it will have significant problems in meeting these future challenges.

11

III. PROBLEMS WITH THE DIS PROTOCOL

A. OVERVIEW

Although the current DIS protocol has been a major advancement in network protocols

for distributed virtual environments, in its current form it is unable to meet the rapidly

growing demands of new applications for Distributed Virtual Environments (DVEs). The

basic shortcoming of the current DIS protocol is that it is fixed and cannot be easily

modified to meet a new communications requirement. It also suffers from limited capacity

and being too large for what it needs to do [DURLACH95]. This section will cover some

of the areas in which the DIS protocol is lacking.

B. NATIONAL RESEARCH COUNCIL RECOMMENDATIONS

In 1995 the National Research Council released a report on the current state of virtual

reality research that made several recommendations about where the government should

allocate resources towards this area. In the chapter on networking virtual environments, the

study noted several shortcomings with DIS and made several recommendations for future

work. The report concluded that the current DIS standard was not designed for generalized

information exchange between large scale virtual environments and the standard is too

specific and too complex to be useful to general virtual environment development

[DURLACH95]. The report also recommended that a major research initiative be

undertaken to look at alternatives to DIS.

What is needed is a major research initiative to investigate DIS alternatives that
allow a generalized exchange of information between the distributed participants of
large-scale virtual environments. The new protocol needs to be extensible, a feature
that DIS lacks. [DURLACH95]

C. INSTITUTE FOR SIMULATION AND TRAINING GOALS

In the DIS Vision Report prepared by the DIS Steering Committee in May of 1994, the

committee identified similar shortcomings in the current protocol definition and set forth

12

goals to correct these problems. The goals set by the steering committee are to increase the

functional areas covered by PDUs by planning for the expansion of numbers and types of

PDUs due to changes in military doctrine and application, and expansion of DIS into non-

Department of Defense (DOD) applications [DIS94]. Another goal is to balance PDU

information content and bandwidth efficiency by streamlining PDUs. This could be done

by removing static and infrequently changing information from high frequency PDUs (e.g.

ESPDU), and send only dynamic data that has changed since last sent and represent data as

compactly as feasible [DIS94]. The committee also stated that “In situations where

bandwidth is very limited, use PDU sets that have been optimized for bandwidth efficiency

and accept possible lack of data [DIS94]”. The last and possibly most important

recommendation made by the steering committee is “If feasible, define a tailorable set of

such PDUs [DIS94].” Both the National Research Council recommendations and the DIS

Steering Committee goals point to the fact that the current DIS standard must be further

developed in the areas of flexible information exchange and bandwidth efficiency.

D. AREAS REQUIRING IMPROVEMENT IN DIS

1. Network Bandwidth Requirements

It has been estimated that using current protocols such as SIMNET and DIS, a

simulation with 100,000 players would require approximately 375 Mbps of network

bandwidth to each computer participating in the simulation [MAC95a]. Since such

bandwidth is not likely to be available in the near future, the implementation of large-scale

virtual environments will require a communications protocol with a much lower bandwidth

requirement. Because DIS is a stateless system and does not utilize servers, all data must

be distributed to all entities in the system. When the status of one entity changes, it must

send an update, as an ESPDU, to every other entity in the simulation. As such, ESPDUs

can account for up to 70% of the network traffic [MAC95a]. The problem with this

approach is that most of the data in an ESPDU is constant (i.e. vehicle markings, country

of manufacture. etc.) which results in the majority of transmitted data being redundant. It

13

may be possible to significantly reduce the bandwidth necessary for a simulation by

reducing the redundant data transmitted by each entity. Of course it remains to be proven

that the redundant data is a large part of the problem because each ESPDU is typically small

(approximately 144 bytes) [MAC95a]. Another reason to reduce the bandwidth

requirements is to enable the use of DIS by the low bandwidth RF communications used

by instrumented ranges. This capability is essential for the insertion of live players into a

simulation. Unfortunately, it is not currently possible to easily reconfigure the ESPDU to

determine if a smaller PDU will reduce the bandwidth requirements.

2. New Network Technologies

One of the promising developments that may solve the bandwidth problem for

large-scale environments is the fielding of new high bandwidth networks such as ATM.

However, ATM uses fixed length 53 byte cells. It may be possible to optimize the DIS

protocol for ATM by making the PDU conform to the 48 byte payload size of the ATM cell

[MAC94]. It has been suggested that much of the ESPDU could be reduced in size by

eliminating the redundant information such as the host and site identification which could

be extracted from the IP address contained in the frame header [MAC94]. Other possible

ways of reducing the ESPDU size are removing the fields for vehicle markings,

capabilities, alternate entity type and parts of the entity type such as country. It may also be

possible to use a single dead-reckoning algorithm and thus reduce the size of the Dead

Reckoning Parameters field of the ESPDU [MAC94]. Again, with the current fixed

protocol, research on these ideas is not easily accomplished.

3. Non Department of Defense Use

As distributed virtual environments have evolved so has the number of applications

outside of the Department of Defense. Distributed virtual environments are being

developed for use in industry, entertainment and education. These uses are far from the

original motivation for developing DIS of training large numbers of soldiers in a simulated

combat environment. Unfortunately, DIS suffers from its origins as a military training tool.

14

The current PDUs are designed for military applications. This has hindered the acceptance

of DIS by the non-DOD user and the DIS steering committee has stated the making DIS

more attractive to the non-DOD user is one of its goals. In order for this to happen there

must be an easy method of defining new PDUs to meet the needs of a user.

4. Meeting Differing Demands

The current DIS protocol is a compromise between two different uses of DVE’s.

While the original intent of training soldiers is still valid, the use of DIS for testing new

weapons systems is becoming widely accepted. However, the precision requirements of

weapons development and testing are very different than those of combat training. These

differing precision requirements have lead to a compromises in the format of the protocol.

The use of 64 bit floating point numbers for coordinates is required for weapons testing but

is excessive for training applications [MAC94]. Reducing the precision of these numbers

could be a method of reducing PDU size.

5. New Requirements for Military Simulations

The requirements for military simulations are also growing and dictating changes

in the DIS protocol. Two new areas that DIS does not support well are articulated humans

in the DVE and the need to aggregate individual vehicles into units. While it is possible to

introduce articulated humans into DVE’s using DIS it is very cumbersome. Current

research at the Naval Postgraduate School has successfully placed articulated humans into

its NPSNET virtual environment using the Dismounted Infantryman software. However,

the human motion is partially based on postures stored in the Jack Motion Library from the

University of Pennsylvania. The human communicates its basic posture in the ESPDU

appearance field. Upon receipt of the ESPDU the application decodes the field, determines

the posture and requests the appropriate joint angles from the Jack Motion Library. It is

possible to support real time articulations driven by users wearing sensors through the

articulation parameters of the ESPDU. However, for a large number of articulation

15

parameters this is extremely inefficient. To allow for efficient real time articulated humans

a new more compact PDU needs to be developed. [PRAT95]

Another new need is to aggregate individual vehicles into a unit and to

communicate the tactical state of that unit. Currently there are no PDUs defined to support

this.

6. Summary

Solutions to the DIS shortcomings listed above are difficult to achieve because it is

very difficult to define a new PDU and reconfigure an application to use this PDU. In the

current version of NPSNET all of the functionality to read and write DIS PDUs is fixed in

the code and requires a modification of the code and recompilation in order to use a new

PDU. This is not a trivial task. What is needed is a method to rapidly redefine a PDU and

implement its use without having to modify the application code.

16

17

IV. PREVIOUS WORK

A. OVERVIEW

As the shortcomings of the current DIS Standard have become apparent there has been

significant work in developing new methods of defining protocols for distributed

simulations. Many methods for improving the extensibility and scalability of the DIS

Protocol have been proposed and some have been tested. This Chapter outlines some of the

more significant ideas and proposals for a more extensible and scalable protocol.

At the 13th and 14th Workshops on Standard for DIS, many proposals for the Next

Generation of DIS have been presented. Much of the work has focused on making

modifications to the current DIS PDUs to allow for greater flexibility. Some has focused

on a totally new method of designing these protocols. Concepts such as PDU Profiles and

Optional PDU Fields concentrate on making modifications to the current DIS PDUs. Self-

describing PDUs and the DIS Protocol Support Utility specify how to define a protocol

using a formal grammar and provide methods for implementing new PDU definitions

[COHEN96a, CANTER95].

B. PDU PROFILES

1. Overview

The concept of PDU Profiles was proposed by the Protocol Subgroup of the DIS

Field Instrumentation Working Group as a method of expanding the functionality and

flexibility of the current DIS Standard [SCHUG95]. The group concluded that “multiple

standard PDU formats” or profiles, could accommodate different simulation requirements

that cannot be met with one PDU format. A PDU Profile would define each PDU in five to

ten different ways through the use of optional ordered sets of fields (See Figure 3). Each

field would define a data item and all of its attributes. The profile would attempt to define

all of the optional ways to form a PDU and to define all of the optional fields. The format

of each of the five to ten PDUs would be fixed. The data that could be included, the location

18

of the data in the PDU, the representation of the data and the amount of data would all be

fixed by the profile. [SCHUG95]

2. Assessment

The concept of a PDU Profile is a limited method of defining options for PDUs so

that they can be modified to meet differing simulations’ requirements. This approach adds

some flexibility and maintains interoperability with the current standard, but it does very

little to fix the other drawbacks in the standard. The total number of PDUs increases

drastically, increasing the complexity of programming and maintaining a simulation

system. Each of the PDUs still contains redundant information. There may be a small

reduction in the size of the PDUs but this benefit is counteracted by the increased number

of PDUs. There is no reduction in the number of PDUs that are transmitted. And it is very

unlikely that all of the profiles can be pre-defined in a way that meets a large set of

simulation requirements. [SCHUG95]

 Entity State PDU Profile

Field ID Field ID Field IDField
Length

Field
Length

Field
Length

Field ID Field ID Field IDField
Length

Field
Length

Field
Length

Field ID Field ID Field IDField
Length

Field
Length

Field
Length

Field ID Field ID Field IDField
Length

Field
Length

Field
Length

Profile 1

Profile 2

Profile 3

Profile 4

Figure 3. Sample PDU Profile [SCHUG95]

19

C. OPTIONAL PDU FIELDS

1. Overview

An expansion of the PDU Profile approach is to have user specified option fields in

the PDU, where, instead of pre-defining the PDU fields and their contents for all of the

options, the users define the fields on an as needed basis. This allows the format of the PDU

fields to be specified to meet the requirements of a specific simulation exercise. There are

a number of ways that the fields can be specified. [SCHUG95]

2. Existing PDU Field Option

This approach uses existing fields in the current DIS PDUs as Option fields to

accommodate more user requirements. The idea is to use an existing field as an Option field

and to use other existing fields to contain the optional entity attribute data. An example of

this approach would be to use the PDU Header Padding field (See Figure 2) to specify the

user definable additional data items to be inserted into the PDU, as well as data items to be

deleted from the PDU. An existing field that could be used to transmit the additional data

is the Articulation Parameters field in the Entity State PDU. The Number of Articulation

Parameters field could be defined by the options field in the header to include the additional

data that is not normally in the entity state PDU. [SCHUG95]

This method provides very good compatibility with the current DIS fixed format

PDUs. It will accommodate user unique data as long as there is an available field in the

PDU where the user defined data can be placed. Unfortunately, this approach does little to

reduce the size of the PDUs nor does it reduce the transmission of unnecessary data. The

user must transmit all the data defined in the PDU, even if there is no use for that data.

Another problem is that there may not be a field available for inserting additional data.

[SCHUG95]

20

3. Insertion of a New Option Field

Inserting a new Options field of 8 bits into the header of existing and future PDUs

would allow two hundred and fifty-six options for accommodating additional data. If

Option 0 is unused and Option 1 is defined to be the standard PDU without modification,

there are two hundred and fifty-four additional PDU formats that can be supported. Options

two through ten could be pre-defined PDU profiles with every data element defined as in

the PDU Profile section above. The additional options would contain the standard header

for that PDU type, but all of the fields after the header are optional and are defined by the

users through their own method of field definitions. [SCHUG95]

This method allows for completely user definable PDUs and allows a very wide

range of PDU definitions while maintaining some compatibility with the current DIS fixed

format PDUs. This approach accommodates PDU Profiles as described above, as well as

defining one of the options as an Update PDU, containing only the attributes that have

changed. PDUs that are optimized for any application can be defined at the cost of having

to define the options before an exercise can begin. There is also the overhead of testing this

potentially very large set of options for compatibility among the simulations participating

in the exercise. [SCHUG95]

4. Assessment

The concept of Optional PDU Fields expands the flexibility of the current DIS

Standard but does very little to improve on the scalability of the protocol. Using these

concepts, redundant data is transmitted frequently which unnecessarily uses network

resources. These ideas do not provide for an easy method of implementation as each of the

above concepts will require a significant amount of application re-coding.

21

D. SELF-DESCRIBING PDUS

1. Overview

The concept of self-describing PDUs is an extension of the Option Field Method

described above. All self-describing PDUs contain an option field and all data elements

contained in a PDU would be optional and are defined on an as needed basis during pre-

exercise setup. [SCHUG95]

Prior to a simulation exercise, the participants would agree upon the format and

content of the PDUs required for the exercise. A protocol definition would be developed

and distributed to all participants. Each participant would use the protocol definition to

initialize a set of PDU look-up tables for decoding PDUs during the exercise. Ideally, this

initialization would be done using a generic software package that would automate the

construction of the PDU decoding tables. [SCHUG95]

During run-time, the PDU contents could be modified to exclude unnecessary data

items with the option field telling the recipient what data items are included in the PDU and

how to decode the PDU. Even the enumeration and encoding of the data items are left to

the user to define. This provides a great amount of flexibility at the cost of additional PDU

processing and set up overhead. [SCHUG95]

2. Self-Defined Messages with Multiple Presentations

Danny Cohen and Moshe Kirsh of Perceptronics have proposed and tested a method

of constructing a self-describing protocol definition known as Self-Defined Messages with

Multiple Presentations (SDM/MP) [COHEN95, COHEN96a, COHEN96b]. SDM/MP is

designed to allow more effective use of communications resources by deferring protocol

bindings until exercise set-up time and run time, providing dynamic trade-offs between

network bandwidth and data precision [COHEN95]. SDM/MP provides a large amount of

flexibility by providing a mechanism for defining new PDUs. SDM/MP is not concerned

with the format of specific messages but with how to define the messages easily. SDM/MP

provides a framework for the design and implementation of different protocols using a set

22

grammar and by sharing items from dictionaries. Three components are used to build a

protocol: the Data Item Dictionary (DID) that defines the available Data Items and maps

those Data Items to classes, the Presentations Dictionary (PD) that defines the possible

presentations for each class, and an Exercise Profile that defines a set of messages (PDUs)

as a set of Data Items with their allowed presentations. The use of the Data Item Dictionary

and the Presentations Dictionary provides a high degree of flexibility while the Exercise

Profile constrains that flexibility by selecting only a subset of the possible DID+PD

combinations. [COHEN95]

3. Self-Defined Messages

The need to scale up the number of entities in a simulation requires that the

communications protocol be as efficient as possible. For a communications protocol to be

efficient it must use some type of compression [COHEN96a]. The Self-Defined Message

(SDM) part of SDM/MP provides some of this compression by allowing all data elements

in a PDU to be optional and transmitted only when needed, for example, a resting entity

need not send acceleration. SDM defers the decision of which data elements should be

included in the PDU until run time. [COHEN95]

This concept has been used previously in protocols like the Simple Mail Transfer

Protocol (SMTP). The header of an SMTP message is a sequence of fields, each starting

with a field-ID, followed by a colon, followed by text to the end of the line. The body,

separated from the header by a blank line, is random text, terminated by a line with only a

period on it. The header is an example of a self-describing message. The message indicates

its content by specifying which fields are included. Field-IDs (e.g. “To”, “From”, “CC”,

and “Subject”) indicate which fields are included. [COHEN95] By allowing data items to

be optional and excluding those data items that are not necessary from PDUs, SDM allows

the user to send the minimal size PDU possible without transmitting any redundant or

unnecessary information.

23

4. Multiple Presentations

The Multiple Presentations (MP) portion of SDM/MP provides multiple

representations of the various classes of data elements. MP offers the user choices between

machine and human readability and trade-offs between precision and network bandwidth

that may be deferred until exercise setup time and run time. In the current DIS Standard,

the single presentation for each data element is designed to accommodate the worst case of

both dynamic range and precision. Since only a small fraction of all cases are the worst

case, great savings are achieved by providing dynamic choice of data representations

depending on the run time situation. SDM/MP provides dynamic choice of data element

representation through the list of presentations defined in the Exercise Profile and the

Presentations Dictionary. [COHEN95]

Combining Self-Defined Messages with Multiple Presentations creates a domain

independent formal method of defining the structure and the presentations of a protocol. It

supports the deferral of the choice of the PDU structure to exercise set up and run times and

allows both static and dynamic optimizations of the protocol structure. SDM/MP defines

the syntax and provides the framework to define the semantics of the protocol, but defines

neither the semantics nor the dynamic behavior of the protocol. This is left for the

simulation designer. [COHEN95]

5. Dictionaries

The SDM/MP concept is based on a coupled pair of dictionaries, the Data Item

Dictionary (DID) and the Presentations Dictionary (PD). The purpose of these dictionaries

is to define data elements and their presentations. The DID defines the Data Items and maps

them to classes. The PD defines the allowable presentations for each of the classes.

a. Data Item Dictionary

Different Data Items in the DID may be instances of the same class from the PD.

The format of the DID is designed to promote human understanding. An example of a DID

is contained in Figure 4. The DID lists the Data Item name, the associated class name and

24

a text field for the definition of the semantics for the Data Item. The Data Item name is used

in a message to identify the class name, which is then used to look up the entry in the

Presentation Dictionary to find the Data Items presentation.

b. Presentation Dictionary

The Presentation Dictionary maps the classes contained in the DID to their

allowable presentations. The PD includes the class name, presentation name, data type,

units and description that includes attributes such as range, precision, errors and semantics.

For classes that have Multiple Presentations, one presentation is chosen to be the canonical

representation. The internal representation of the data should use the canonical

presentation. The canonical presentation is marked in the dictionary by having the “*” sign

preceding the Presentation name. Figure 5 shows a section of a PD developed for a DIS

exercise.

Data Item Name Class Name Semantics Definition
--------------------- --------------- ----------------------------

ProtocolVersion Identifier #
MessageType Identifier #
TimeStamp Time
MessageSerialNumber Identifier
SenderEntityID EntityID
TargetEntityID EntityID
SenderLocation Location
TargetLocation Location
CenterOfExercise Location
SenderLinearVelocity LinearVelocity
TargetLinearVelocity LinearVelocity
SenderOrientation Orientation
TargetOrientation Orientation

Figure 4. Data Item Dictionary [COHEN96b]

25

c. Exercise Profile

The Exercise Profile specifies the set of allowable messages and their structures,

i.e. which Data Items should be included and using presentations. While the DID and PD

provide a high degree of flexibility by allowing messages to include any subset of Data

Items at any presentation, the Exercise Profile removes much of this flexibility by selecting

only a subset of the possible DID + PD combinations. The Exercise Profile specifies

everything that may have programming implications regarding the Data Items and their

Class Presentation
Name Name Data Type Units Description
------- ------- ------------- ------- ---------------
Identifier *P1 u_char

P2 u_short # Unique Entity ID
P3 u_short[3] # Site, Appl., ID

Time *P1 u_long [mSec] # since start of exercise
P2 u_long [sec] # since 00:00:00 1-1-70
P3 u_short [min] # since start of exercise

Location *P1 double[3] [m] # X, Y, Z geo
P2 float[3] [m] # X, Y, Z geo
P3 float[2] [deg] # Long / Lat
P4 short[3] [m] # dX, dY, dZ Ref to sender
P5 short[2] [deg] # dLong / dLat Ref to sender

Linear
Velocity *P1 double[3] [m/sec] # Vx, Vy, Vz

P2 float[3] [m/sec] # Vx, Vy, Vz
P3 float[3] [rad/sec] # Vlong / Vlat
P4 null # no movement

ArtParams *P1 struct
{
 u_char # Param Type Designator
 u_char # Change Designator
 u_short # ID attatched to
 u_long # Param Type
 char[8] # Param Value
}

Figure 5. Presentation Dictionary [COHEN96b]

26

presentations by means of Message Templates. The Exercise Profile consists of a Profile

Header and a set of Message Templates. An example of an Exercise Profile is shown in

Figure 6. [COHEN96b]

The Profile Header includes general information common to all of the Message

Templates required for encoding and decoding all messages, such as the Profile ID,

Presentation Dictionary ID, Data Item Dictionary ID, size of Message ID Type and

alignment information. The Profile Header also contains the specification for the TAGS

and FLAGS that are used to specify which optional data items are present in a message.

The Tag Organization, Submask Type, Submask Continuation and Submask Bit Alignment

fields all relate to the TAGS and FLAGS that are used to specify the optional data items.

These fields and their format will be discussed in a later section. [COHEN96b]

d. Message Template

The Message Template (MT) is a mechanism to specify the possible content of

various messages (PDUs). MTs specify what are the mandatory Data Items, optional Data

Items, and their allowed presentations. An example of a Message Template is in Figure 7.

The MT also specifies the mechanisms for the format and layout of each Data Item. Within

the Exercise Profile, Message Templates are enclosed by curly braces {} and are separated

by commas. The first item in a Message Template is a Message Header which contains the

message type specification and may contain attributes such as Alignment Policy and

Submask that overwrite the general attributes from the Profile Header. Messages may

contain any type of Data Items specified in the DID. These Data Items and their

presentations are further specified in Data Item Templates. [COHEN96b]

27

< # begin of profile
Header
Profile-Version 1.0,
Profile_ID profile,
PD_ID DIS3_PD,
DID_ID DIS3_DID,
Msg_ID_Type u_char,
Tag_Organization Grouped,
Alignment_Policy natural,
Submask_Type u_char,
Submask_Continuation YES,
Submask_Bit_Alignment NO,

Message Item Templates
Template Type |
 | |
 V V
{ 1, # Message Template 1

Message Header
.....

Message Items
 ProtocolVersion(P1), # u_char Identifier
 SenderID(P2), # u_short EntityID
 TimeStamp(P1), # u_long [mSec]
 [SenderLocation(P1, # double[3] X, Y, Z geo [m]

 P2) TAG], # float[3] X, Y, Z geo [m]
 [SenderLinearVelocity(P1) TAG], # double[3] Vx, Vy, Vz

[m/sec]
 [SenderOrientation(P2) TAG], # char[3] Psi, Theta, Phi

[rad]
 [TargetID(P1) TAG],
 [TargetLocation(P1, # double[3] X, Y, Z geo [m]

 P2) TAG], # float[3] X, Y, Z geo [m]
 [TargetLinearVelocity(P1) TAG], # float[3] Vx, Vy, Vz [m/sec]
 [TargetOrientation(P2) TAG] # char[3] Psi, Theta, Phi

[rad]
},

{ 2, # Message Template 2
 ProtocolVersion(P1), # u_char ID
 SenderID(P2), # u_short UEID
 [TimeStamp(P1, P2) FLAG], # u_long [mSec]
 [CenterOfExercise(P1) TAG], # double[3] X, Y, Z geo [m]
}

> # end of profile

Figure 6. Exercise Profile [COHEN96b]

28

e. Data Item Template

The Data Item Template (Figure 8) is a mechanism to specify how the

information for a particular Data Item is presented. All names in the Data Item Template

are referenced in the DID and PD. Class names and item names are referenced in the DID

and PD, and all Class and presentation names are referenced in the PD. There are two types

of Data Item Templates: Mandatory and Optional. Mandatory Data Items must appear in

every message of a given type. Optional Data Items are marked in one of two ways,

depending on their presentation. Each Data Item Template contains a Data Item Name and

a list of allowable presentations. Optional Data Items are enclosed by a pair of square

brackets “[]” and contain a marking field, TAG or FLAG, that specifies how the presence

of the Data Item is indicated in a message. Marking the existence of Optional Data Items

by a FLAG is suitable for Data Items that have a high probability of appearance and a small

number of presentations. A bit-mask is used to keep the flags for all optional Data Items of

this type. Because reserving bits in the bit-mask may become expensive for a message with

a large number of optional data items that have a low probability of inclusion, a TAG that

indicates the presence of a Data Item can also be used. [COHEN96b]

{ 2, # Message Template 2
 ProtocolVersion(P1), # u_char ID
 SenderID(P2), # u_short UEID
 [TimeStamp(P1, # u_long [mSec]

P2) FLAG], # u_long [25mSec]
 [CenterOfExercise(P1) TAG], # float[3] X, Y, Z geo [m]
}

Figure 7. Message Template [COHEN96b]

29

6. Advantages of SDM/MP

The primary advantage of the SDM/MP method of specifying a protocol definition

is that the final message structure is not defined until the application is running. Unlike the

current DIS protocol, where the final message structure is defined by a committee long

before an exercise is run, SDM/MP defers the final binding until exercise setup time and

then run time. At exercise setup time, an Exercise Profile with the proper Data Item

Dictionary and Presentation Dictionary is selected. The selection of the Exercise Profile

binds the messages, data elements, and presentations. The final binding is done at execution

time when messages and their format are selected dynamically by the application. The

application selects the proper message type and the best format from the Exercise Profile

depending on the status of the application at the time. [COHEN95]

This ability to defer the selection of the message type and format until run time

gives the application the ability to optimize its communications while running. This gives

the simulation a great amount of flexibility that will help greatly in increasing the

Presentation Names
 (P1 refers to x/y/z geo [m].

 P3 refers to long / lat [deg])
|

Data Item Name |
(sender’s location) |

V V V V

___________ ___ ___ ____
[SenderLocation (P1, P3) TAG]
^ ^
| |
|---------Optionality Symbol--------------- |

Figure 8. Data Item Template [COHEN96b]

30

scalability and extensibility of the communications protocol. This flexibility comes at the

expense of added overhead at exercise setup time and increased message processing at run

time. However, experimentation by Cohen and Kirsh has shown that SDM/MP reduced the

communications requirements by factors of 4X to 40X, depending on the nature of the

exercise [COHEN96a]. [COHEN96b]

E. PROTOCOL SUPPORT UTILITY

1. Overview

The Protocol Support Utility was developed by Major Michael Canterbury at the

Naval Postgraduate School as an aid to rapid development of network protocols for

distributed simulations. It was designed as a tool to help implement solutions to many of

the problems with the current DIS Protocol. “The Protocol Support Utility provides a

means to easily manipulate the form and content of a given PDU, and automatically

generate the program source code necessary to implement any changes made to the DIS

Protocol.” [CANTER95].

The Protocol Support Utility uses a modified Bachus-Naur Form (BNF) grammar

to describe the protocol and allows the user to edit the grammar specification of the

protocol. When the protocol specification is complete, the Protocol Support Utility will

generate C++ source code that reads and writes the specified protocol. The Protocol

Support Utility uses a lexical analyzer to read the protocol specification. The lexical

analyzer uses code generated by the UNIX utility program LEX. The Protocol Support

Utility uses the concept of an Application Profile to generate the source code needed for a

given application. The Application Profile is a collection of functions needed to produce

the desired source code for a given system. Currently, the Protocol Support Utility supports

two application profiles; the NPSNET Profile to support the Naval Postgraduate School’s

NPSNET Virtual Environment and the Class-based Profile which was used to demonstrate

the ability of the Utility to generate source code based on different programming

paradigms. [CANTER95]

31

2. Protocol Support Utility Grammar

The formal grammar used by the Protocol Support Utility is a modified Bachus-

Naur Form grammar. BNF is a metalanguage typically used as a formal method for

defining programming language constructs. BNF was chosen for this application because

of its wide acceptance and its simplicity. BNF may be easily adapted to meet almost any

application need and it is the embodiment of simplicity [CANTER95].

The grammar is based upon the fundamental concept of syntactic units and terminal

symbols. Syntactic units are the grammar constructs which are considered valid in the

particular language being described. In BNF, syntactic units are generally enclosed in

angular brackets,<grammar construct>. The terminal symbols used in BNF are the

primitive or atomic language elements on which the described grammar is based.

[CANTER95]

The syntactic constructs used in the grammar are shown in Figure 9. A pair of

angular brackets “<< >>” is used to distinguish PDUs. Braces “{}“ are used to signify

dynamic data structures and square brackets “[]” indicate a sized array of elements. The

semi-colon “;” is used to end each definition.

32

These grammar constructs are used to model the protocol under development. As

an example, the current DIS Protocol was modeled using this grammar. The definition of

the DIS Protocol was broken into three parts: the Atomic Data Types, the Composite Data

Types and the Protocol Data Units. The Atomic Data Types expressed in the grammar are

actually aliases for the basic data types found in a typical programming language. For the

Protocol Support Utility, the basic data types are those found in the C++ programming

language. The correspondence between the Atomic Data Types and the basic C++ data

types are shown in Figure 10. Capitalization is used as a means of discriminating which

Atomic Data Types were meant to be formal data type definitions. Using this approach, the

Atomic Data Type declarationPDUType signifies a formal data type definition while the

declarationnum_params indicates an Atomic Data Element defined in terms of some

Grammar Construct Meaning

<< PDU >> PDU

< composite > composite data element

{< composite >} composite structure

< composite > [size] composite element array

atomic atomic data element

{atomic} atomic structure

atomic [size] atomic element array

enum8, unint16,... alias for primitive data type

::= “is defined as”

; “end definition’

Figure 9. Descriptive Grammar Constructs [CANTER95]

33

primitive data type associated with the programming language used for the

implementation. [CANTER95]

These Atomic Data Types are used to build a set of Composite Data Types which

are in turn used to build the definition of the PDUs in the protocol. Figure 11 illustrates use

of the grammar in modeling a typical PDU, a Composite Data Element and an Atomic Data

Element. [CANTER95]

Grammar Primitive C++ Data Type

bool32 unsigned int

enum8 unsigned char

enum16 unsigned short

float32 float

float64 double

pad8 char

pad16 short

pad32 unsigned int

uint8 unsigned char

uint16 unsigned short

uint32 unsigned int

Figure 10. Grammar to Data Type Correlation
[CANTER95]

34

Given this structured grammar specification with which to build a protocol

definition, it was possible to build tools to manipulate the definition of the protocol by

altering its grammar-based description. The modified description may then be used to

regenerate the program code needed to implement the protocol. [CANTER95]

<<EntityStatePDU>>::= <PDUHeader>
 <EntityID>
 ForceID
 num_articulat_params
 <EntityType>
 <Alt_EntityType>
 <VelocityVector>
 <EntityLocation>
 <EntityOrientation>
 entity_appearance
 <DeadReckonParams>
 <EntityMarking>
 capabilities
 <ArticulaParams>[ART_PARAMS]
 ;

 <PDUHeader> ::= protocol_version
 exercise_id
 PDUType
 protocol_family
 time_stamp
 length
 padding16
 ;

 ForceID ::= enum8;

Figure 11. Protocol Utility Grammar [CANTER95]

35

3. Protocol Support Utility

As stated earlier, the purpose of the Protocol Support Utility is to provide an

automated facility for protocol development, to include authoring, editing, and

implementation. To achieve this goal the Protocol Support Utility had to have the following

capabilities: read and parse the given grammar specification, maintain and store the

grammar in an internal representation suitable for other program use, support both

authoring and editing of the protocol grammar as necessary, support source code generation

based upon specific Application Profiles, and support interactive use of the tool through a

simple to use graphical user interface (GUI) [CANTER95]. The components of the

Protocol support Utility are designed to support these functions.

a. Lexical Analysis

The Protocol Support Utility uses a LEX-based lexical analyzer for parsing an

input grammar. The analyzer is designed to recognize the unique delimiters which identify

PDUs and Composite and Atomic Data Elements. The analyzer is basically a finite state

machine with five states. These states are:

 <C_CMMT>

 <CPP_CMMT>

 <INITIAL>

 <PDU_DEF>

 <STRUCT_DEF>

The first two states are designed to support embedded comments in both the C

and C++ conventions. The analyzer detects a comment and ignores subsequent tokens until

it recognizes an appropriate comment ending delimiter. The next state, <INITIAL>, is the

rest state. In this state, the analyzer is waiting for the definition of a protocol element. This

state corresponds to the left side of a production rule and the analyzer will accept any

grammar construct. When the analyzer detects a PDU or Composite construct the

<PDU_DEF> or <STRUCT_DEF> state is set and the analyzer expects to encounter only

36

Composite or Atomic constructs. The <PDU_DEF> and <STRUCT_DEF> states

correspond to the right-hand side of a typical production rule. [CANTER95]

When the analyzer detects an allowable construct, it will invoke one of the Table

Management function associated with the Utility. These functions provide the means to

initialize, load, and update the internal data tables (Symbol, PDU, etc.) Through these

functions, the internal data tables will be fully loaded when the analyzer detects the end of

the grammar file. This lexical analysis process is used repeatedly during the program

execution as a method of initializing and updating the grammar stored in the internal data

tables. [CANTER95]

b. Internal Data Tables and Structures

The heart of the Protocol Support Utility lies in the data structures used to store

and maintain the protocol grammar. These tables serve as the repository for the protocol

elements that are defined in a given grammar. Four separate tables are used: the Symbol

Table, the PDU Table, the Composite Table and the Atomic Table. The Symbol Table is

the structure in which the character strings associated with each grammar are stored. With

each of these strings three index fields are also stored. Each index field corresponds to one

of the protocol constructs (PDU, Composite, or Atomic) supported by the grammar. Only

one of the three index fields is used for any entry. If the character string corresponds to a

PDU, only the PDU index field is set, the other two remain undefined. This table provides

a way to remember the type of protocol element that is associated with each character

string.

Each element in the PDU Table represents a single PDU definition consisting of

a table index which points to its name in the symbol table, an element count and an array

of protocol elements. The Composite Table is similar to the PDU Table but is used to store

the definition of a Composite Data Element.

The Atomic Table is slightly different from the other tables used to store PDU

and Composite elements. An entry in the Atomic Table consists of two Symbol Table

37

indices and a single character string. The first index into the Symbol Table references the

position where the name of the Atomic element is stored. The second index provides the

name of the primitive data type associated with the Atomic element. The character string

in each entry is to hold a string representing a programming language data type during

source code generation. [CANTER95]

c. User Interface

The Protocol Support Utility is operated through a Graphical User Interface

(GUI) that consists of a Main Program Window which supports a pulldown menu bar, a

grammar view window, and a display of the runtime status of the Utility. Also supported

are a series of buttons which launch the editors for each type of protocol element.

[CANTER95]

d. Grammar Editors

The Utility supports editing of the grammar through an ASCII-based text editor.

As currently implemented, the Utility usesjot, the default text editor on most Silicon

Graphics computers. When the user launches the editor for a given type of protocol

element, it reads in the appropriate grammar file and displays it for the user. Editing is done

as one would edit any text file. When editing is complete, the user must update the grammar

in the internal tables by pushing the “Update” button. “Update” reinitializes the internal

tables and invokes the lexical analyzer on the newly defined grammar file. [CANTER95]

e. Source Code Generation

The principle feature of the Protocol Support Utility is the ability to generate

program source code based upon a previously parsed grammar [CANTER95]. Because of

the diversity of the Distributed Simulations community, it is unlikely that the source code

produced for one application would be usable by another application. As such, the Protocol

Support Utility uses the concept of an Application Profile to provide flexibility in terms of

the structure, content, and scope of the source code produced. An Application Profile is a

38

collection of functions needed to produce the desired source code for a given system

[CANTER95]. Application Profiles may differ greatly. The characteristics of a Profile are

dictated by the implementation dependencies within the host system application. Currently,

the Protocol Support Utility has incorporated two Application Profiles, the NPSNET

Profile and the Class-based Profile.

The NPSNET Profile has been designed to support NPSNET which is a DIS

compliant, networked software architecture built to support large scale virtual

environments [MAC94]. NPSNET was chosen as a candidate profile because of its local

availability and its maturity as a host platform for DIS use. [CANTER95]

The Class-based Profile was designed to demonstrate the ability to generate

source code based upon different programming constructs or paradigms. Under this Profile,

each PDU is implemented as a derived class.

4. Advantages of the Protocol Support Utility

The Protocol Support Utility provides an easy and flexible method of building a

new or modified protocol definition. Its formal grammar provides an unambiguous

definition of a protocol that is concise and easily understandable. The ability to rapidly

define a protocol and generate appropriate source code is necessary in the effort to develop

solutions to the problems with DIS.

If there is an area where the Protocol Support Utility is lacking, it is in defining a

flexible protocol. As it operates now, it is very easy to generate a new protocol definition,

but that protocol is then fixed. It provides no ability to delete redundant or unnecessary data

items at runtime. Nor does it provide any flexibility in the representation of the data

elements.

F. SUMMARY

The concepts of PDU Profiles, User Defined Option Fields, Self-describing PDUs and

the Protocol Support Utility all contribute to solving the problems of the current DIS

Standard. However, none of these, by themselves, allow for a truly extensible and scalable

39

protocol. What is needed is a protocol that incorporates the best elements of each of these

concepts.

40

41

V. DESIGN OF A RAPIDLY RECONFIGURABLE PROTOCOL

A. INTRODUCTION

The International Telecommunications Union of the United Nations defines a protocol

as “A set of rules and formats (semantic and syntactic) which determines the

communication behavior of entities in the performance of functions.” [Schug95]. A

simulation protocol is the set of rules that specify the services to be performed on an entity

and on its attributes over a communications link [Schug95]. The messages used within a

simulations protocol typically specify the object, the attributes of the object, and the

services to be performed on the object or its attributes. The goal of such a simulation

protocol is to allow for interaction between simulation systems that may have been built for

separate purposes, or, built using different technology. To do this a simulation protocol

must support interoperability between different and geographically dispersed simulation

entities, a standard method of simulation applications interfacing, central simulation

management in distributed environments, and reduced software development and

maintenance [Schug95].

When the DIS Protocol was designed, it met this goal, given the uses of simulation

technology at the time. However, the rigid and limited methodology used in the current DIS

Protocol does not meet the demands of the current and future uses of distributed

simulations. The DIS Community has recognized this and has proposed a number of

protocol related improvements that increase the extensibility and scalability of the protocol.

Several of these suggested improvements serve as the foundation of this research. They are:

increasing the functional areas covered by PDUs, balancing PDU content with bandwidth

efficiency, streamlining PDUs, and defining a tailorable set of PDUs [Canter95]. All of

these ideas are encompassed in the motivation for this work as stated in Chapter I. “The

motivation for this work is to implement a rapidly reconfigurable, application level network

protocol for use in distributed simulations and to use this protocol in experimenting with

large-scale simulations”.

42

B. DESIGN CRITERIA

A protocol that meets all of the goals listed above must be easily changed and must

allow for the rapid development of PDUs to meet new simulation requirements. It must

optimize the format of the transmitted data to the minimum number of bits that provide the

required precision. The protocol must allow unnecessary or unchanging data to be

eliminated from PDUs at run time. But, the protocol must also provide backward

compatibility with the DIS 2.03 Standard. And, most important of all, it must allow for all

of these changes without requiring code changes to the simulation application. Each of the

proposals and efforts covered in Chapter IV add some of the desired functionality to the

DIS Protocol. However, none meet all of the goals stated above. To meet these goals, the

best features of each idea must be combined into one protocol.

The approach adopted for this thesis effort is to combine the concepts of Self Defined

Messages with Multiple Presentations (SDM/MP) and the formal grammar and automated

code generation of the Protocol Support Utility. The ideas of SDM/MP provide the ability

to optimize the format of the data transmitted to the minimum number of bits required and

to eliminate unnecessary or unchanging data from PDUs. The Protocol Support Utility

provides the functionality to quickly and easily modify the protocol and to automatically

generate the source code necessary to use the newly modified protocol. The strengths of the

two approaches compliment each other. Where the SDM/MP approach provides a high

degree of flexibility in a protocol, it does not provide for rapid modification of the protocol

definition nor for the generation of source code. The Protocol Support Utility allows for

rapid protocol modification and source code generation, but its simple grammar

specification does not provide any flexibility in the protocol once it is defined. Combining

these two approaches will take advantage of the strengths of both and increase the

extensibility and scalability of the DIS Protocol.

43

C. SIMULATION SYSTEM DESIGN

Early in this project, it became very apparent that a simulation application must be

designed correctly in order to take advantage of the benefits of a reconfigurable network

protocol. As experimentation with the Protocol Support Utility and the Reconfigurable

Network Protocol progressed, many difficulties were encountered between the network

protocol and the existing simulation application, NPSNET-IV. These difficulties centered

around the data representation within NPSNET and with its original design as a DIS

compliant simulation system. As work progressed a new, more robust architecture for

distributed simulation applications was developed.

1. NPSNET-IV

NPSNET-IV was designed as a DIS compliant, networked software architecture to

support large-scale distributed virtual environments [MAC94]. The NPSNET-IV series of

software has been an excellent DIS compliant visualization package, however, its

limitations have become increasingly obvious. Since its conception, NPSNET-IV was

designed to operate strictly in a DIS environment and lacks the flexibility to use any other

network protocol. As designed, the NPSNET-IV architecture is monolithic and is not easily

modified (Figure 12). Being rooted in DIS has allowed a visualization system which uses

the IRIS Performer Graphics Package to be built around a very efficient DIS Networking

Library. Because it was not envisioned that NPSNET-IV would be used outside of the DIS

world nor that the system would need to be ported to systems other than SGI, the DIS

Protocol and IRIS Performer Graphics Library are deeply embedded through out the entire

system. [BARKER96]

44

Because of its design as a DIS compliant system, the logical choice for the internal

data representation within NPSNET-IV was the data representation used within the DIS

Protocol. As such, every data structure related to DIS PDUs within NPSNET-IV is in the

same format as DIS. Similarly, every data element contained in the DIS PDUs processed

by NPSNET, Entity State, Fire, and Detonation, is represented as a data structure within the

system. This DIS dependent internal data representation has led to difficulties in integrating

a reconfigurable network protocol with NPSNET-IV. During the development of the

Protocol Support Utility, the lack of a standard data naming convention within the DIS

Protocol and NPSNET-IV led to difficulties in creating the NPSNET Application Profile

[CANTER95]. Additionally, the dependence of the NPSNET-IV network library on the

DIS Protocol definition created problems. In his findings, Canterbury states:

Without a clearly defined API, automated source code generation is problematic.
A more generic network harness should be developed, one not dependent on specific
protocol entity definitions. Once implemented, this network harness would serve as
the API needed to accommodate automated source code production for DIS
applications. [CANTER95]

Initialize System

Process Network

Dead Reckon Entities

Update Driven Vehicle

Render Frame

Shared Memory
Network Buffer

Input Buffer

Net Read Process

Input Read
Process

Application Process

Figure 12. NPSNET-IV Architecture

45

While Canterbury was able to overcome these difficulties for the DIS Protocol as it

is now defined, changing the protocol definition caused problems with NPSNET-IV.

Because NPSNET-IV internally expected all of the data contained in a PDU, in exactly the

format specified in the PDU, any attempt to change the protocol definition caused the

application to fail. An early approach in this thesis effort was to develop a code module that

would reside between the Net Read Process and the Network Buffer and translate the data

from an incoming PDU into the expected format. This proved to be troublesome and added

additional processing to a time-critical process. This approach was quickly abandoned. The

solution to these problems is to completely separate the internal data representations from

the external communications protocol.

2. Application Program Interface

What was needed was a specific Application Program Interface (API) between the

Simulation Protocol and the Simulation Application. APIs are the interface between the

Simulation Application Programs and the Simulation Protocol. The API encodes the

application program data into service data units which are presented to the simulation

protocol. The API translates between the data in the application program , e.g., aircraft

location, and the protocol service, e.g., send X to Y. APIs support portability of the

application software and of simulation entities. The simulation protocol specifies what the

API must provide to interface with the protocol. The system implementor is free to code

the API as he sees fit, using any programming language, as long as the API interfaces

correctly with the simulation protocol. [SCHUG95]

It is very important to isolate the API from the simulation protocol because the API

is unique to every application and system and requires custom coding for each application.

Separating the API from the simulation protocol isolates the interface functions that require

custom coding from the simulation protocol services that should not change. Figure 13

illustrates the relationship between simulation application programs, APIs and the

simulation protocol.

46

The concept of an API between the application and the simulation protocol is used

in NPSNET-IV. NPSNET-IV has a well defined, efficient DIS network library that

performs the API functions between the application and the simulation protocol. The

problem with the implementation used is that the internal data representation is the same as

the data representation within the protocol, and, there is no provision for any flexibility.

Another problem is that the NPSNET-IV network library is dependent on the DIS 2.03

Standard. It cannot be used to process any PDUs other than DIS. This obviously will not

work with a reconfigurable simulation protocol.

3. OpenNPSNET Architecture

The OpenNPSNET Architecture was designed by the NPSNET Architecture

Design Group to overcome many of the current limitations with distributed virtual

environments providing a robust platform for developing large-scale distributed

simulations. The OpenNPSNET Architecture is built around a set of software modules

called “managers”. The managers work independently to manage their part of the system

while working together concurrently to accomplish the end goal. The managers are used to

APPLICATION PROGRAM INTERFACE

APPLICATION PROGRAM

SIMULATION PROTOCOL

Lower Level Network Protocols

Figure 13. Application Program / API / Simulation Protocol
Relationship [SCHUG95]

47

provide networking, graphics, and interface capabilities to be used by a large-scale,

distributed visual simulation system. Figure 14 gives a graphical representation of the

OpenNPSNET Architecture.

a. Managers

A manager is a self-contained, independent thread of execution (lightweight

thread, process, or program) with clearly defined responsibilities within the system. A

EM = Entity Manager
DM = Display Manager
IM = Interface Manager
NM = Network Manager
SM = Stealth Manager

EM

DM

IM

NM

SM

In
te

rC
om

 (
V

irt
ua

l B
us

)

P
hy

si
ca

l N
et

w
or

k

Figure 14. OpenNPNSET Architecture

48

manager can use multiple code libraries and classes of objects to accomplish its mission.

The libraries for OpenNPSNET are collections of related routines, with a well defined

APIs, that provide a service. Typically, a library will make use of objects and maximize

object-oriented principles such as modularity, reusability, data encapsulation and

information hiding. Several libraries, with identical APIs, may exist to support cross-

platform software development.

Each of the managers in the OpenNPSNET Architecture is designed to be a stand

alone piece of software that can be run independently of the other managers. This

modularity provides a great amount of flexibility for the system. Managers can be added or

deleted from the system as the situation calls for, without affecting the other managers. In

general, for a simulation system to run correctly it will require several managers to be

running simultaneously. The Entity Manager is responsible for maintaining state

information for all of the entities in the exercise. It will perform dead-reckoning, motion

smoothing, and monitoring state and appearance changes. The Display Manager is

responsible for generating and displaying the three-dimensional graphics representing the

virtual world. It loads, maintains and displays the geometry for all entities and events in the

world, manages the frame buffer and processes special display modes. The Interface

Manager collects input data from all human-computer interfaces used in the simulation. It

interprets the inputs and issues control information to accomplish the input requests. The

Network Manager is responsible for all communications with other simulation systems

within the exercise. It will read and process all information from the external network and

publish that information for the other managers to use. It will also take information from

the other managers and write it to the network in the specified message format. Other

managers, such as the Stealth Manager, can be added as needed to manage other special

purpose functions.

49

b. Intercom Library and Channels

The intercom library is used for all interprocess communications between

managers. The library provides for multiple channels to support parallel communications.

A channel is dedicated to one “type” or “class” of communication information. A manager

may both publish and consume information from the same channel if needed. It is assumed

that the intercom provides reliable communications. The API for this library will remain

constant but its implementations will vary. At a minimum, the intercom library will include

a TCP/IP Multicast version for use across a network and a shared memory version for use

in a multi-processor computer.

c. Network Manager

The modular design of the OpenNPSNET Architecture provides a method for

solving the protocol format dependency problem found with NPSNET-IV. By

disassociating the internal data representation from the external communications protocol

it is possible to implement a flexible protocol. The Network Manager serves as the API

between the simulations system with its internal data format and the external simulation

protocol.

Given the flexible nature of the external simulation protocol, the internal data

representation must also be flexible. Because the simulation protocol may contain optional

data units that may, or may not, be present in a PDU, the internal data representation must

not depend on the format of the PDUs. Additionally, the data contained in a PDU may be

in one of several presentations, so the internal data representation must be able to

accommodate several possible formats for each data element. To accomplish this it is

important that the internal formats used to communicate between managers on the intercom

be flexible and capable of handling the largest data formats possible. In the OpenNPSNET

Architecture, the method of communicating on the intercom is the Internal Protocol Data

Unit (IPDU). The IPDU consists of a short header that identifies the contents of the IPDU

and a variable amount of data. The header identifies the IPDU as either an Entity Attribute

50

IPDU or a Control IPDU. Entity Attribute IPDUs carry entity information and are

identified by a unique Entity ID contained in the header. A Control IPDU carries control

information used to run the simulation. The variable length data field contains data in a

TAG : VALUE format. The TAG identifies the meaning and format of the data and the

VALUE gives the actual data value. The names and formats of these TAGs and VALUEs

is fixed and must be able of accommodating any of the possible presentations from the

simulation protocol. As such, the worst case format is assumed. This should not be a

problem, as these IPDUs will be transmitted using only shared memory or a Local Area

Network, and network bandwidth constraints are not be a problem.

The Network Manger design is built around three software components. (See

Figure 15) The first is a generic network reader/writer library that reads and writes PDUs

to and from the network. This library is not dependent on the format of the PDUs and can

read and write any PDU specified. Another software library reads and writes IPDUs to the

intercom. This library is dependent on the TAGs and VALUE formats specified. There may

Figure 15. Network Manager Architecture

Intercom (Virtual Bus)

Physical Network

Generic Reader/Writer

Internal Format Reader/Writer

Protocol Specific Code

Protocol Data Units

Internal Protocol Data Units

51

be several versions of each of these libraries for different platforms and for different

implementations of the intercom.

The third software component is the simulation protocol specific code necessary

to decode a PDU received from the network, map the data items received to the correct

internal representation, and to format the IPDUs. This block of code will be highly

dependent on the protocol specification and will be coded for each protocol.

4. Summary

The OpenNPSNET Architecture provides the application design that is necessary

to utilize a reconfigurable simulation protocol. It allows the internal data representation to

be disassociated from the external protocol format which, in turn, allows for a flexible

protocol to be used. The Network Manager serves as the API between the external protocol

and the internal data representation by decoding PDUs and mapping its data elements to

IPDUs for internal use.

D. PROTOCOL SPECIFICATION GRAMMAR

1. Introduction

The benefit of a structured grammar lies in its ability to simplify the representation

of a complex problem of concept. The Protocol Support Utility uses a modified Bachus-

Naur Form grammar to describe the Protocol Data Units of the DIS Protocol. While the

grammar used in the PSU is simple and it adequately describes the DIS Protocol, it provides

for no flexibility within the PDUs it specifies. Once the protocol specification has been

generated, it becomes fixed. The concept of Self-defined Messages with Multiple

Presentations allows a protocol to be flexible and to optimize the content of PDUs at run-

time, making more efficient use of network resources. Combining the formal grammar of

the PSU with SDM/MP will create a formal method of generating a flexible protocol

definition.

52

2. Grammar Definition

The grammar used by the Protocol Support Utility uses four distinct constructs for

building a protocol. They are the Protocol Data Unit, the Composite Data Element, the

Atomic Data Element, and the Primitive Data Type. While these four constructs are

adequate for a fixed protocol definition, the SDM/MP concept requires a different set of

constructs. The grammar used in this implementation also recognizes four constructs. They

are the PDU, the Data Item, the Class, and the Primitive Data Types. Creating PDUs is the

ultimate goal of this effort and PDUs are the highest level construct in the protocol. PDUs

are constructed of Data Items. Each Data Item is an instance of a Class with one or more

Presentations. A each Presentation of a Class is built of a Primitive Data Type. The Data

Items in a PDU may be optional and may be present more than once.

The syntactic constructs used in this grammar are very similar to those used in the

Protocol Support Utility. A PDU is identified by a pair of double angular brackets “<< >>”.

Data Items are distinguished by a pair of angular brackets, “<>”, while Classes are

represented by a character string. Optional Data Items are marked by either “TAG” or

“FLAG” within braces “{TAG}”. Arrays of Primitive Data Types or Data Items are

indicated by square brackets “[3]”. The complete list of syntactic constructs used is shown

in Figure 16.

Using these constructs it is possible to build a protocol for almost any simulation

requirement. It is possible to construct a simple, fixed protocol definition or a more

complex, highly flexible protocol. Figure 17 gives an example of a very simple application

of this grammar.

53

As a naming convention, Class names begin with a capital letter while all other

names begin with a lower case letter. The Primitive Data Types expressed in the grammar

are, in reality, aliases for the basic data types found in the C++ programming language.

Marking the existence of Optional Data Items with a flag is suitable when the data item has

a high probability of appearing in the PDU and a small number of possible Presentations.

Tags are included in the PDU using a bit-field. As a convention, the bit-field is located

immediately after all mandatory data items. The bits in the bit-field are allocated in the

order that the data items are listed in the PDU. The number of bits needed for each flagged,

optional data items is found by rounding up the result of log2(nP+1), where nP is the

number of possible presentations for that data item [COHEN96b]. For example, a data item

with only one presentation requires only one bit. A data item with two or three

presentations requires two bits. The summation of these totals yields the total number of

bits required in the bit-field. Cohen proposes that the format and size of the bit-field be

calculated at setup time. He also proposes that the bit-field contain a “continuation” bit to

indicate a continuation of the bit-field in another data item. While these concepts are

certainly possible, for simplicity, they are not included in this implementation. It is up to

Grammar Construct Meaning

<<PDU>> Protocol Data Unit

<data item> Data Item

Class Class

enum8, uint16, ... Primitive Data Type

{TAG}, {FLAG} Optional Data Item

(P1) Presentation

enum8[3] Array of Primitive Data types

<data Item>[3] Array of Data Items

::= “is defined as”

; “end definition”

+ Data Item may appear multiple times

Figure 16. Descriptive Grammar Constructs

54

the protocol designer to calculate the bits required and to include a bit-field of the proper

size in the PDU definition. It is also up to the protocol designer to determine if padding is

needed to maintain alignment and to include it if necessary.

When reserving bits in the bit-field turns out to be expensive for data items that have

a low probability inclusion or a large number of possible presentations, a tag can be used

to indicate the presence of the data item. Again as a convention, all tags are grouped

immediately following the bit-field for flagged data items. There is one tag for each

optional data item included in the PDU. The size and format of the tag is dependent on the

number of possible presentations for the data item. It is possible to represent 256

presentations of a data item with eight bits. This should normally be sufficient. The value

of each tag will be calculated at setup time. Tag # 1 would be assigned to the first

presentation of the first tagged, optional data item. Tag # 2 would go to the second

presentation of the first tagged, optional data item etc. While this will add processing time

at exercise setup, it should be minimal if tags are used correctly. For simplicity, it is again

up to the protocol designer to determine the correct size and format for the tags and to

include them in the PDU definition. Since 8 bits should normally be sufficient and all tags

are grouped together, the tag would be included in the PDU as “<tag> (P1) +”.

55

// Data Item Definitions

<pdu_type> ::= Enumeration;
<time_stamp> ::= Time;
<sender_entityID> ::= Entity_ID;
<sender_linear_velocity> ::= Linear_Velocity;
<sender_location> ::= Location;
<tag> ::= Tag;
<flag> ::= Flag;

// Class Presentation Definitions

Enumeration P1 ::= enum8,
P2 ::= enum16;

Time P1 ::= uint32, // seconds
P2 ::= uint16; // mSec

Entity_ID P1 ::= uint16[3], // site, host, entity #
P2 ::= uint16, // entity #
P3 ::= uint16[2]; // site, host

Linear_Velocity P1 ::= float32[3], // Vx, Vy, Vz [m/sec]
P2 ::= float64[3], // Vx, Vy, Vz [m/sec]
P3 ::= int16[3]; // Vx, Vy, Vz [m/sec]

Location P1 ::= float64[3], // X, Y, Z geo [m]
P2 ::= int16[3]; // X, Y, Z geo [m]

Flag P1 ::= uint8,
P2 ::= uint16,
P3 ::= uint32;

Tag P1 ::= uint8,
P2 ::= uint16;

<<EntityStatePDU>> ::= <pdu_type> (P1),
<time_stamp> (P1),
<sender_entityID> (P2),
<flag> (P1),
<tag> (P1),
<sender_location> (P1) (P2) {FLAG},
<sender_linear_velocity> (P1) (P2) {TAG};

Figure 17. Descriptive Grammar Example

56

3. Lexical Analyzer

Based on this grammar, a LEX-based scanner was developed. The scanner is a

modification of the scanner used in the Protocol Support Utility and recognizes the unique

delimiters which identify PDUs, Data Items, or Classes. As in the PSU, the scanner is

designed as a simple finite state machine. The scanner states include:

<C_CMMT>

<CPP_CMMT>

<INITIAL>

<PDU_DEF>

<DATA_DEF>

<CLASS_DEF>

The states <C_CMMT> and <CPP_CMMT> support embedded comments in both

the C and C++ programming language styles. In either of these states the scanner detects a

comment and ignores all subsequent characters until it recognizes the appropriate

comment-ending delimiter.

The <INITIAL> state is the reset state. In this state, the scanner is awaiting the

definition of a protocol element. This state corresponds to the left-hand side of a production

rule and the scanner will accept any valid grammar construct. In the <INITIAL> state, if a

PDU, Data Item, or Class construct is detected, the <PDU_DEF>, <DATA_DEF>, or

<CLASS_DEF> state is set as appropriate. In any of these states, the scanner expects to see

only Data Items, Classes or Primitive Data Types. These three states correspond to the

right-hand side of production rules.

When the scanner detects an allowable grammar construct, it will call one of the

table management functions associated with the grammar. These functions initialize, load

and update the internal data tables. The most important of these functions are listed in

Figure 18.

57

Other functions are used to load array, optional data item, and other information

into the tables. When the scanner reaches the end of the input grammar file, the internal data

tables will be fully loaded. This process is used repeatedly during the development of a

protocol specification as a method of initializing and updating the protocol specification

stored in the internal data tables.

4. Internal Data Tables and Structures

The internal data tables are implemented as a series of fixed size array and serve as

a repository for the data elements that are defined in a given grammar. These tables are

accessed by both the lexical scanners and by the source code generation routines. Four

separate tables are used to store the grammar constructs.

a. Symbol Table

The Symbol Table implementation is very similar to that used by Canterbury in

the Protocol Support Utility. It contains the label, a character string that identifies each

element of the protocol definition, and an index field that corresponds to one of the

grammar constructs, PDU, Data Item, Class or Primitive Data Type. For each label stored

in the Symbol Table, the appropriate index is used to match the label with the protocol

Function Purpose

void initTables(); Initializes the internal data tables.

void stripToken(); Removes the delimiting symbols.

void addSymbol(); Adds a symbol to the symbol table.

void addSymbolPDU(); Adds a PDU to the PDU table.

void addSymbolDATA(); Adds a Data Item to the tables.

void addSymbolCLASS(); Adds a CLASS to the CLASS table.

void addPRESENTATION(); Adds a Presentation to the tables.

Figure 18. Table Management Functions

58

entity stored in its corresponding table. If the label corresponds to a PDU, then only the

PDU index field is set. The others remain undefined. If the label corresponds to a Primitive

Data Type, no index is defined. As the last step of the lexical analysis process, these

Primitive Data Types are replaced with the appropriate C++ data types in the Data Item

Table. In this way, the Symbol Table keeps track of the protocol element associated with

each label.

b. PDU Table

The PDU Table contains the definitions of all of the PDUs contained in the

protocol definition. Each entry in the PDU Table represents a single PDU definition. Each

entry contains a label index that points at its name in the Symbol Table, an element count

and an array of one or more data elements. The specific number of data elements in the

PDU is contained in the element count.

c. Data Item Table

The Data Item Table matches the Data Item definition to a Class. The table

contains a label index, pointing at the appropriate entry in the Symbol Table, and a Class

Label index that points at the name of the appropriate class in the Symbol Table.

d. Class Table

The Class Table contains the definition of each class with all of the presentations

for that class. The table consists of the label index, a presentation field indicating which

presentation the entry represents, and an atomic type field. The atomic type field points at

the entry in the Symbol Table for the Primitive Data Type used in the presentation. An

additional field is used to indicate when an array of Primitive Data Types are used for that

presentation.

E. SOURCE CODE GENERATION

The ability to define a protocol is of little value if there is no way to translate the

protocol grammar into a usable form. One of the primary advantages of the Protocol

59

Support Utility is its ability to generate program source code based on the defined grammar.

Because of the diversity of Distributed Simulation applications, the Protocol Support

Utility adopted the concept of an Application Profile. An Application Profile is a collection

of functions needed to produce the desired source code output for a given simulation

system [CANTER95]. Application Profiles may differ greatly depending on the needs of

the end system. Previously, the Protocol Support Utility supported two Application

Profiles, the NPSNET Profile, used with NPSNET-IV and the Class-based Profile. As

stated earlier, NPSNET-IV is not capable of effectively utilizing a flexible protocol, so the

NPSNET Profile is of little value to this implementation. The Class-based Profile was

designed to be an example of the Utility’s ability to generate code based upon a different

programming paradigm. While this Profile was not intended for any specific simulation, it

formed the basis of the development of an Application Profile for the first simulation

implemented using the OpenNPSNET Architecture, NPSNET-V.

The initial implementation uses a combination of the Protocol Support Utility’s Class-

based Profile and the current DIS Network Class. The source code generated by the PSU

implements each PDU as a class. Each of the PDU classes contains the data items that make

up the PDU and the functions necessary to set the data item values of the PDU, calculate

the length of the PDU, create the bit-mask and to write the PDU to the network. To

determine which optional data items should be included in the PDU at which presentation,

there is a ‘present’ flag that is set to 1 if the optional data item is to be transmitted or to 0

if the data item is not present. This flag is set by the set value function when the application

builds the PDU. The member functions include write_PDU(), read_PDU(), reset_PDU(),

print_PDU(), pdu_length(). If there are optional data items, functions set_bit_field() and

set_present() will be generated. For initial testing, the write_PDU() and read_PDU()

functions are implemented using the existing DIS Network Library. This was done to

simulate the OpenNPSNET Network Manager which is under development. An example

of this source code is included in Appendix C.

60

F. SUMMARY

The combination of the formal, grammar based protocol definition used in the Protocol

Support Utility and the concepts of Self-Defined Messages and Multiple Presentations, as

proposed by Cohen, has resulted in a more flexible method of defining a protocol for use

by distributed simulations. Such a protocol is easily optimized at run time so that the

network resources used can be minimized. This occurs by eliminating all unnecessary

information contained in a PDU through the use of optional data items, and, by utilizing the

smallest number of bits to represent the information that is contained in the PDU through

the concept of Multiple Presentations. By minimizing the network resources necessary for

a simulation application to communicate, it will be possible to increase the number of

simulation entities participating in the exercise. This method also increases the extensibility

of the protocol by allowing the user to define any type of PDU necessary.

61

VI. EXPERIMENTAL RESULTS

A. SOURCE CODE TESTING

To test the generation of source code by the Protocol Support Utility, two current DIS

utility programs were modified to use the generated class libraries. POPULATE is a DIS

compliant program that is used to create and transmit DIS PDUs to a network. It was

initially developed as a simple method of sending PDUs across a network as an aid to

simulation development. POPULATE uses pre-programmed state information to generate

Entity State PDUs. BUG_DIS reads Entity State PDUs from the network, copies the data

from the received PDU into a new PDU and sends it back out onto the network. It was

developed as an irritant program for harassing entities in a DIS exercise. These two

applications were chosen for this test because of their simplicity and focus on the Entity

State PDU. Both were modified to use the generated classes and to provide for network

monitoring.

The testing focused on the Entity State PDU because of its dominance of network

traffic during a simulation exercise. Because approximately 70% of all network traffic is

ESPDUs, the greatest gains in network utilization should be realized by optimizing the

ESPDU. The base case for this test consists of entities transmitting the current DIS 2.0.3

ESPDU while in a resting state. It is in the resting state when the largest number of

unnecessary bits are transmitted across the network. Using the PSU, a protocol

specification of the current DIS ESPDU, with all data items mandatory and with the correct

DIS 2.0.3 presentations, was created (See Figure 19) and source code for the network

classes generated. The test consisted of POPULATE creating and transmitting ESPDUs

across the network while it maintained a log of the information that it had sent. BUG_DIS

received the PDUs and retransmitted the data as it kept a record of the PDUs received. This

established the base measurement for comparison to the test case.

62

The test case consisted of an ESPDU with all but the critical information made

optional. For this test the critical data items were determined to be all of the PDU header

information, the entity kind information, sender location and sender orientation. These

were determined to be the minimum information necessary to correctly relay the state of an

entity at rest. Data items such as location and orientation were given presentations that

<<EntityStatePDU>> ::= <protocol_version>(P1),
 <exercise_ID>(P1),
 <PDU_Type>(P1),
 <protocol_family>(P1),
 <time_stamp>(P1),
 <length>(P2),
 <header_padding>(P2),
 <sender_entityID>(P1),
 <force_ID>(P1),
 <num_articulation_params>(P1),
 <entity_kind>(P1),
 <domain>(P1),
 <country>(P2),
 <category>(P1),
 <sub_category>(P1),
 <specific>(P1),
 <extra>(P1),
 <alt_entity_kind>(P1),
 <alt_domain>(P1),
 <alt_country>(P2),
 <alt_category>(P1),
 <alt_sub_category>(P1),
 <alt_specific>(P1),
 <alt_extra>(P1),
 <sender_linear_velocity>(P1),
 <sender_location>(P1),
 <sender_orientation>(P1),
 <sender_appearance>(P3),
 <DeadReckAlgorithm>(P1),
 <OtherParams>(P4),
 <sender_linear_accel>(P1),
 <sender_angular_vel>(P1),
 <character_set>(P1),
 <markings>(P5),
 <capabilities>(P3);

Figure 19. Specification of Base Case ESPDU

63

required fewer bits than the DIS 2.0.3 presentations. All optional data items were marked

with a FLAG and were given only one presentation. This method was chosen because it

resulted in the fewest number of bits to mark the presence of the optional data items.The

specification for this ESPDUs shown in Figure 20.

The first run of the test case consisted of sending ESPDUs for a stationary entity with

the required data items, header information, entity type, and location, at the smallest

<<EntityStatePDU>> ::= <protocol_version>(P1),
 <exercise_ID>(P1),
 <PDU_Type>(P1),
 <protocol_family>(P1),
 <time_stamp>(P1),
 <length>(P2),
 <header_padding>(P2),
 <sender_entityID>(P1),
 <force_ID>(P1),
 <num_articulation_params>(P1),
 <entity_kind>(P1),
 <domain>(P1),
 <country>(P2),
 <category>(P1),
 <sub_category>(P1),
 <specific>(P1),
 <extra>(P1),
 <sender_location>(P3),
 <sender_orientation>(P2),
 <flag>(P2),
 <alt_entity_kind>(P1) {FLAG},
 <alt_domain>(P1) {FLAG},
 <alt_country>(P2) {FLAG},
 <alt_category>(P1) {FLAG},
 <alt_sub_category>(P1) {FLAG},
 <alt_specific>(P1) {FLAG},
 <alt_extra>(P1) {FLAG},
 <sender_linear_velocity>(P1) {FLAG},
 <sender_appearance>(P3) {FLAG},
 <DeadReckAlgorithm>(P1) {FLAG},
 <OtherParams>(P4) {FLAG},
 <sender_linear_accel>(P1) {FLAG},
 <sender_angular_vel>(P1) {FLAG},
 <character_set>(P1) {FLAG},
 <markings>(P5) {FLAG},
 <capabilities>(P3) {FLAG};

Figure 20. Specification of Test Case ESPDU

64

possible presentations. This configuration establishes the greatest possible reduction in bits

transmitted while using the data items from the base case. Other configurations of the test

case were tried with the entities moving and using larger presentations of the data items. It

was expected that the test results from these configurations would lie somewhere between

the base case and the first test case.

B. TEST RESULTS

The testing demonstrated that both the base case protocol specification and the test

case protocol specification could be used to generate source code that could read and write

ESPDUs from the network. The test case demonstrated that by using optional data items it

is possible to significantly reduce the number of bits transmitted across the network. While

the base case ESPDU required 144 bytes to be transmitted when the entity was at rest, the

test case ESPDU required only 42 bytes. This is a reduction of almost four times.

This reduction in the number of bytes transmitted can have a significant impact for a

large-scale simulation. Assuming the current DIS Standard of at least one ESPDU per

entity every five seconds, a simulation of 100,000 entities with each entity at rest would

require approximately 23 Mega-bits per second (Mbps) of network bandwidth when using

the current DIS ESPDU. Using the ESPDU defined in Figure 20, the network bandwidth

required drops to approximately 5.9 Mbps, a decrease of 3.9 times. Of course, this is the

maximum possible reduction. In reality, a large percentage of entities would be changing

state by moving or interacting with other entities by firing, colliding or some other manner.

The actual reduction in network bandwidth requirements would be somewhere between the

two extremes. The specific requirements are impossible to predict because of the highly

dynamic nature of network traffic during a distributed simulation.

The techniques of Self-Defined Messages and Multiple Presentations provide a

mechanism to significantly reduce the network bandwidth requirements of a large-scale

distributed simulation. These reductions will make the realization of 100,000 player

simulations more likely.

65

VII. FINDINGS AND FUTURE RESEARCH

The future of DIS will largely depend on its ability to adapt to the growing user demand

for distributed simulations and to support the larger, more dynamic virtual worlds of

tomorrow. The “scalability” and “extensibility” of the protocol are the principle issues that

must be addressed in order to meet these new demands. Scalability requires that the

protocol be able to perform adequately as the number of entities in the simulation grows.

Extensibility requires the protocol to be easily modified to meet new simulation demands.

The current DIS Protocol is neither scalable nor extensible. This thesis has addressed these

problems by developing a method of easily creating or modifying a protocol that can be

optimized during execution. The Protocol Support Utility Version 2, provides a means of

easily creating a protocol specification using a simple BNF style grammar. The grammar

used supports the scalability of the protocol through optional data items and multiple

presentations. Through these concepts it is possible to minimize the number of bits

transmitted across the network by sending only the data necessary to convey the state of the

simulation and by sending that data in the smallest number of bits that will meet the needs

of the simulation.

This chapter provides a summary of the findings and conclusions resulting from this

research. The following information reflects the insight gained in formulating a descriptive

grammar for simulation protocols, modifying the Protocol Support Utility to use the new

grammar, and in the application of these tools. Also presented is a synopsis of related

research topics which require continued investigation.

A. FINDINGS

This thesis effort was organized into four distinct phases. The results of this work are

similarly organized. The first phase was to design a simulation protocol that would be both

scalable and extensible. To meet this goal the concepts of Self-Defined Messages and

Multiple Presentations were incorporated with the current DIS Protocol. The Self-Defined

Message concept allows for data items within the PDUs to be optional and for the

66

simulation application to decide at run-time which of these optional data items should be

included in the PDU. Multiple Presentations allows data items to be represented in several

ways and for the application to decide at run-time the most appropriate representation of

the data. These concepts create a protocol that is easily optimized at run-time and uses the

minimum number of bits required to transmit the state of the simulation.

The second phase was to develop a formal grammar to describe the protocol discussed

above. A modified Bachus-Naur Form grammar was successfully used to describe the

protocol. This grammar provides a simple method of rapidly defining a simulation

protocol. The grammar developed is able to accurately define a simulation protocol for any

use.

The third phase was to adapt the Protocol Support Utility to use the new grammar and

to generate source code for reading and writing the new protocol. The Protocol Support

Utility was easily modified to support the new protocol specification. Source code

generation proved to be troublesome because of the lack of a clearly defined API between

the network protocol and the application. A more generic network library that is not

dependent on specific PDU definitions is needed to serve as this API. The Network

Manager of the OpenNPSNET Architecture will provide this functionality.

The final phase of this research was the testing of the protocol. A simple test of the

implementation of the software necessary to use this protocol demonstrated that a

maximum of a 400% decrease in the number of bits transmitted across the network can be

realized. The network traffic of a distributed simulation is usually very dynamic and this

figure represents the best possible optimization of this traffic. In practice, the reduction in

network traffic would be somewhat less than this. These results show that the new protocol

can significantly reduce the network resources required and will allow for a greater number

of participants in a large-scale distributed simulation.

67

B. AREAS FOR FUTURE RESEARCH

Distributed Simulations are an evolving technology and future research opportunities

can be found in many areas. In [DIS94] , the DIS community has defined its objectives for

future research. Many of these objectives are yet to be met and much work remains to be

done. There are a number of topics which stem specifically from this work.

First, this effort should be continued by fully implementing the Network Manager of

the OpenNPSNET Architecture and fully testing the SDM/MP Protocol. A complete

understanding of the benefits and drawbacks of this approach will not be realized until

testing with a full simulation application is done. Additional testing of different protocol

specifications must also be completed.

Future research should examine the possibility of removing the code generation step

from the process. It may be possible for a simulation application to directly access the

tables used by the Protocol Support Utility to determine the protocol specification. It seems

possible that a generic PDU reader/writer could be developed that uses the protocol

specification stored in the symbol tables to process PDUs. This would simplify the protocol

specification process and remove the time consuming step of recompiling the network

libraries every time the protocol specification is changed.

Another area related to this effort that requires research is the distribution of the

protocol specification. For this approach to work well for a large-scale distributed

simulation, there must be a method of easily and rapidly distributing a new protocol

specification to all participants in the simulation. Ideally, this method would be transparent

to the participants and could be done while the simulation is running. Possible approaches

include transmitting the protocol specification in a special PDU or as an autonomous agent

using an agent system such as Telescript or Java.

Addition of a compliance validation feature to the Protocol Support Utility would be

of great benefit. This feature would provide a means to verify that a new or modified

protocol specification is consistent with a given protocol standard. Addition of this feature

68

would extend the utility of the tool to include Protocol Verification, Validation and

Accreditation (VV&A) as well as ongoing Configuration Management Efforts.

While this research has focused on optimizing the amount of network traffic during a

distributed simulation, it has not addressed the problem of each entity having to process

every PDU transmitted. In fact, this effort may complicate this problem because of the

additional processing required to create and decode the optional data items in PDUs. The

Area of Interest Manager proposed in [MAC95a] must be implemented in order to solve

this problem. This will require a great amount of work and development should begin soon.

69

APPENDIX A. PROTOCOL SUPPORT UTILITY INSTRUCTIONS

 DIS PROTOCOL SUPPORT UTILITY Version 2 USER INFORMATION

 The Protocol Support Utility is intended as a tool to be used in the
development and refinement of DIS data elements. The following describes the
installation, operation, use, and support of this tool.

System Hardware Requirements..................

 The Protocol Support Utility was developed for use on platforms which
support typical UNIX-hosted, X-Window environments. Beyond the need for
minimal runtime disk space, no other special resources or hardware facilities
are required.

Installation..................................

 The following files are required for proper program operation. All files
should be installed in the same directory in which the Utility is to be used.

File Use
 psu Protocol Support Utility
_Sample.gram Default/initialization grammar

 The following files are required to support source code generation for the
Application Profiles specified:

Class-based Profile

enum.h Enumeration data file (source:NPSNET pdu.h)

 Silicon Graphics provides an ASCII-based text editor, jot, for default use
on most SGI workstations. The Protocol Support Utility uses this program as
the principle means of editing the protocol grammar. To ensure proper operation
of this feature, jot should be installed in the following location:

 /usr/sbin/jot

 This is the default installation path for jot on most systems. If jot is
not available, or another editor is preferred, an alternate program may be used.
However, the use of an alternate editor requires that minor changes be made
to the Protocol Support Utility, and the entire system recompiled. The specific
source code changes required are discussed below.

70

Program Initiation...............................

 The Protocol Support Utility may be initiated from the UNIX command line as
follows:

% psu

 If desired, an initial grammar file may be loaded on program start-up by
providing the name of the desired grammar file when invoking the Utility as
follows:

% psu myGrammar.gram

User Interface...................................

 The Protocol Support Utility consists of a Main Program Window which
supports a pulldown menu bar, a display window for runtime status messages,
and a viewing window in which working grammar definitions may be displayed.
Also provided are buttons to initiate the editing and update of specific
grammar constructs.

 The pulldown menu bar has two options, File and Generate. The File menu
is used to manage the grammar files processed by the Utility, while the
Generate option is used to initiate source code production as appropriate.
The particular facilities provided under each option are discussed below.

 The Grammar View window provides a facility to view the grammar-based
representation of DIS protocol elements. This is window is for display only
and editing is not supported. The contents of the viewing window may be
selected by means of the pulldown widget labeled "Grammar View". This widget
is located directly above the viewing window and offers the following
selections:

--Sample - allows viewing of a sample grammar specification.
--PDU - allows viewing of all PDUs defined in the current working file.
--Class - allows viewing of all Classes defined.
--Data Item - allows viewing of all Data Items defined.
--All - allows viewing of all PDUs, Classes, and Data Items defined.

 The Grammar View window may be scrolled to view protocol definitions which
have been selected for viewing but do not appear within the text window.
If necessary, the window may be refreshed by reselecting the particular
grammar view desired.The Runtime Message window is located in the lower
portion of the Main Window. This purpose of this window is to display the

71

program's runtime status and error messages as they occur. Like the Grammar
View display, this window may be scrolled to view previous messages which
do not appear within the current viewing area.Located immediately above the
Runtime Message window is the Working Grammar File window. This single line,
text window displays the path and filename of the grammar file currently
active in the Utility. Like the Grammar View and Runtime Message windows,
the Working Grammar File window is used for the display of
information only and may not be edited.

Grammar Files....................................

 The File option on the Menu Bar provides facilities to Open and Merge
pre-existing grammar files, as well as created New files for protocol
development work. It should be noted that any grammar file loaded must
be in a format consistent with the DIS descriptive grammar specified for
use with this Utility. A brief discussion of the grammar is presented
later in this guide.Also found under the File option are facilities to
Save the working grammar file, Close the working grammar file, and Exit
the program.

Authoring and Editing............................

 This Utility supports the use of a simple grammar to describe DIS protocol entities.
The Grammar has three basic constructs:

 << ProtocolDataUnits >>
 < Data Items >
 Classes

 These constructs are used to model the individual protocol entities associated with
DIS. The following example illustrates the use of this grammar in describing a typical
DIS entity:
 Enumeration P1:: = enum8,
 P2::= enum16;

 <protocol_version>::= Enumeration;

 <<SamplePDU>>::= <protocol-version>(P1),
<PDU_type>(P2);

Note that Class definitions should be listed first, followed by data item definitions and
then PDU definitions. If definitions are not in this order, the output of the Protocol

72

Support Utility is unpredictable. For a more detailed explanation of this protocol
definition method consult “A Rapidly Reconfigurable, Application Layer, Virtual
Environment Network Protocol”.

 Naming conventions are an important consideration when describing protocol
entities. Care should be taken that the names given to protocol entities be
consistent with those used in the system for which code is to be generated.
Failure to do so will result in compilation problems when the generated code
is integrated into the DIS host system.

 DIS descriptive grammars may be authored or edited using any ASCII-based text
editor. As mentioned above, the editing facility incorporated into the Protocol
Support Utility is jot, a SGI-supplied product. Grammar edit functions are
initiated by depressing the Edit button associated with the particular
DIS protocol construct to be edited. When a particular edit function is invoked,
a jot session is launched. When invoked, the jot editor will contain the grammar
description of the DIS entities associated with the current session.
 For example, the PDU Editor may be launched by depressing the Protocol Data
Unit Edit button. This done, a jot session will appear and the session
window will contain all PDUs currently defined in the Utility's internal
PDU table.

 The grammar displayed in any jot session may be edited as desired. The
filename reflected by the jot editor (seen above the jot window) is a
scratch file created by the Utility. Once editing is complete, this file
must be saved if changes to the grammar are to be made.Once the altered
grammar file has been saved, the jot editor may be exited. To effect any changes
made during an edit session, the corresponding Update button must be depressed.
Initiating the Update function will effectively reinitialize the internal symbol
tables within the Utility, thereby incorporating any changes made to the grammar.
There is no "undo" feature currently implemented in the Utility.

Source Code Generation.......................

 Code Generation is an automated process. Any working grammar may be used to
generate DIS program source code. A working grammar is the grammar definition
in use by the program at the time that Code Generation is initiated.

 As mentioned earlier, the file associated with the working grammar is
displayed in the Working Grammar File window.To initiate Code Generation,
select the appropriate Applications Profile under the Generate menu located
on the Main Menu Bar. Currently, only one Applications Profile has been implemented.
The Class-based Profile, is intended for use with NPSNET version 5. This profile is not

73

complete as the final configuration of NPSNET-V is not complete.

 Additional Profiles may be added to the Utility if desired. Similarly, the current Profile
may be modified or improved if required.

Program Termination.............................

 The Protocol Support Utility may be terminated by selecting the Exit option
in the File menu located on the Main Menu Bar or by closing ("double-clicking")
the main program window. Care should be taken to save all work prior to program
termination.

74

75

APPENDIX B. PROTOCOL GRAMMAR SOURCE CODE

Program: DIS LEX

Date: 6 May 1996

Written by: Steve Stone

Purpose: This program is part of a larger system
used to parse a user prepared grammar. The

 grammar used is a modified version of BNF
 and is used to describe the application

protocol applicable to Distributed Inter-
active Simulations (DIS). This grammar
supports protocols using the concepts of
Self-defined Messages and Multiple Presentations.

%s C_CMMT C_CMMT_PDU C_CMMT_DATA C_CMMT_CLASS
%s CPP_CMMT CPP_CMMT_PDU CPP_CMMT_DATA CPP_CMMT_CLASS
%s PDU_DEF DATA_DEF CLASS_DEF

%{

#include <string.h>
#include <stdlib.h>

#include "disPSU_GLOBAL_DEFINES.h"
/* #include "genCLASS_globals.h" - only atomicCOUNT referenced */
#include "genCLASS_funcs.h"

char tokenString[MAX_STRING];
char structString[MAX_STRING];
char dataString[MAX_STRING];

extern int classCOUNT = 0;

int LHS = 1;
int ix;

/*~~*/
/* The below function strips the special delimiter symbols */
/* from the scanned tokens. */

void stripToken(char* inString,int tokenType, int yyleng)
{
 int count;
 char *tempString = "";

76

 for(count=tokenType;count<(yyleng-tokenType);count++)
 {
 if (inString[count] != ' ')
 tempString[count-tokenType] = inString[count];
 }
 tempString[count-tokenType] = '\0';
 strcpy(tokenString,tempString);
}

%}

%%

[\t]* { /* skip whitespace */ };
<INITIAL>[\n]* |
<PDU_DEF>[\n]* |
<DATA_DEF>[\n]*|
<CLASS_DEF>[\n]* { /* end of line */ };

<INITIAL>"/*" { BEGIN C_CMMT; };
<PDU_DEF>"/*" { BEGIN C_CMMT_PDU; };
<DATA_DEF>"/*" { BEGIN C_CMMT_DATA; };
<CLASS_DEF>"/*" { BEGIN C_CMMT_CLASS; };

<C_CMMT>[^*/] ;
<C_CMMT_PDU>[^*/] ;
<C_CMMT_DATA>[^*/] ;
<C_CMMT_CLASS>[^*/] ;

<C_CMMT>"*/" { BEGIN INITIAL; };
<C_CMMT_PDU>"*/" { BEGIN PDU_DEF; };
<C_CMMT_DATA>"*/" { BEGIN DATA_DEF; };
<C_CMMT_CLASS>"*/" { BEGIN CLASS_DEF; };

<INITIAL>"//" { BEGIN CPP_CMMT; };
<PDU_DEF>"//" { BEGIN CPP_CMMT_PDU; };
<DATA_DEF>"//" { BEGIN CPP_CMMT_DATA; };
<CLASS_DEF>"//" { BEGIN CPP_CMMT_CLASS; };

<CPP_CMMT>[^\n]* ;
<CPP_CMMT_PDU>[^\n]* ;
<CPP_CMMT_DATA>[^\n]* ;
<CPP_CMMT_CLASS>[^\n]* ;

<CPP_CMMT>[\n] { BEGIN INITIAL; };
<CPP_CMMT_PDU>[\n] { BEGIN PDU_DEF; };
<CPP_CMMT_DATA>[\n] { BEGIN DATA_DEF; };
<CPP_CMMT_CLASS>[\n] { BEGIN CLASS_DEF; };

77

<INITIAL>\<\<[A-Za-z_][-A-Za-z0-9_.]*\>\>

{ BEGIN PDU_DEF;
 stripToken(yytext,2,yyleng);

 addSymbolPDU(tokenString);
};

<INITIAL>\<[A-Za-z_][-A-Za-z0-9_.]*\>

{ BEGIN DATA_DEF;
stripToken(yytext,1,yyleng);

 addSymbolDATA(tokenString, LEFT, NONE);
};

<INITIAL>[A-Za-z_][-A-Za-z0-9_.]*

{ BEGIN CLASS_DEF;
 stripToken(yytext,0,yyleng);
 addSymbolCLASS(tokenString, LEFT, NONE);

};

\:\:\= {LHS = 0; };

<CLASS_DEF>[-A-Za-z0-9_.]*

{ stripToken(yytext,0,yyleng);
 if (LHS)

 {
 addPRESENTATION(tokenString);
 }

 else
 {

 addSymbolATOMIC(tokenString);
 };
};

<PDU_DEF>\<[A-Za-z_][-A-Za-z0-9_.]*\>

{ stripToken(yytext,1,yyleng);
 addSymbolDATA(tokenString, RIGHT, NONE);

};

<PDU_DEF>\([0-9_.]*\)

{ stripToken(yytext,1,yyleng);
 addPDUPresentation(tokenString);

};

<PDU_DEF>\{[A-Za-z_][-A-Za-z0-9_.]*\}

78

 { stripToken(yytext,1,yyleng);
 setOptionFlag(tokenString);

};

<PDU_DEF>\[[A-Za-z_][-A-Za-z0-9_.]*\]

 { stripToken(yytext,1,yyleng);
 addPDU_Array(tokenString);

};

<PDU_DEF>\+
{ stripToken(yytext,1,yyleng);

 setMultiFlag();
 };

<CLASS_DEF>\[[-A-Za-z0-9_*+/.]*\]

{ stripToken(yytext,1,yyleng);
 addCLASS_Array(tokenString);

};

<DATA_DEF>[-A-Za-z0-9_.]*

 { stripToken(yytext,0,yyleng);
 addSymbolCLASS(tokenString, RIGHT, NONE);
 };

<CLASS_DEF>"," { LHS = 1; };

<PDU_DEF>"," { reset_pduPresentation(); };

<INITIAL>\; { LHS = 1;
 objectCOMPLETE(CLASS_DEF_STATE);
 };

<PDU_DEF>\; { BEGIN INITIAL;
 LHS = 1;
 objectCOMPLETE(PDU_DEF_STATE);
 };

<DATA_DEF>\; { BEGIN INITIAL;
 LHS = 1;

 objectCOMPLETE(DATA_DEF_STATE);
};

<CLASS_DEF>\; { BEGIN INITIAL;

79

 LHS = 1;
 objectCOMPLETE(CLASS_DEF_STATE);

};

. ;
%%

int yywrap()
 {
 fclose(yyin);
 return 1;
 }

80

81

APPENDIX C. GENERATED SOURCE CODE

//***
// Protocol Support Utility
// Version 2
//
// Automated Source Code Generation
// for use with
//
// CLASS-based DIS Implementations
//
//***

#ifndef __CLASS_PDU__
#define __CLASS_PDU__

#undef DIS_1_0
#define DIS_2_0

#include "disnetlib.h" // For testing only!
#include "pdu.h" // For testing only!
#include <iostream.h> // For testing only!

/***/
/**** Class-based ****/
/**** DIS Protocol Data Unit Definitions ****/
/***/

/* Official PDU Types: Required */

#define entity_state_PDU_Type 0

class entity_state_PDU
{
 public:
 entity_state_PDU();
 ~entity_state_PDU();
 int write_PDU();
 int read_PDU();
 void reset_PDU();
 void print_PDU();
 int pdu_length();
 void set_bit_field();
 void set_present();
 void display_bits(unsigned short value);

82

//****************************For Testing Only*************************
 int entity_state_PDU::operator==(const entity_state_PDU &);
 int entity_state_PDU::operator!=(const entity_state_PDU &);
//****************************For Testing Only*************************

 unsigned char protocol_version;
 unsigned char exercise_ID;
 unsigned char PDU_Type;
 unsigned char protocol_family;
 unsigned int time_stamp;
 unsigned short length;
 short header_padding;
 unsigned short sender_entityID[3];
 unsigned char sender_force_ID;
 unsigned char num_articulation_params;
 unsigned char entity_kind;
 unsigned char domain;
 unsigned short country;
 unsigned char category;
 unsigned char sub_category;
 unsigned char specific;
 unsigned char extra;
 short sender_location[3];
 short sender_orientation[3];
 unsigned short flag;
 unsigned char alt_entity_kind;
 int alt_entity_kind_PRESENT;
 unsigned char alt_domain;
 int alt_domain_PRESENT;
 unsigned short alt_country;
 int alt_country_PRESENT;
 unsigned char alt_category;
 int alt_category_PRESENT;
 unsigned char alt_sub_category;
 int alt_sub_category_PRESENT;
 unsigned char alt_specific;
 int alt_specific_PRESENT;
 unsigned char alt_extra;
 int alt_extra_PRESENT;
 float sender_linear_velocity[3];
 int sender_linear_velocity_PRESENT;
 unsigned int sender_appearance;
 int sender_appearance_PRESENT;
 unsigned char DeadReckAlgorithm;
 int DeadReckAlgorithm_PRESENT;
 unsigned char OtherParams[15];
 int OtherParams_PRESENT;
 float sender_linear_accel[3];
 int sender_linear_accel_PRESENT;
 float sender_angular_vel[3];
 int sender_angular_vel_PRESENT;

83

 unsigned char character_set;
 int character_set_PRESENT;
 unsigned char markings[11];
 int markings_PRESENT;
 unsigned int capabilities;
 int capabilities_PRESENT;

//*********************for testing only****************
 DIS_net_manager *net;
//*********************for testing only****************

 private:

};

// Function: <<
// Purpose: overloaded ostream operator - expects an object as its
argument

inline ostream & operator<<(ostream & output, entity_state_PDU & e)
{e.print_PDU(); return output;}

// Function: <<
// Purpose: overloaded ostream operator - expects a pointer to an
object as
// its argument

inline ostream & operator<<(ostream & output, entity_state_PDU *e)
{e->print_PDU(); return output;}

#endif /* DIS_1_0 */
#endif /* _CLASS_PDU */

84

//***
// Protocol Support Utility
// Version 2
//
// Automated Source Code Generation
// for use with
//
// CLASS-based DIS Implementations
//
//***

#include "pduCLASS.h"
#include <iostream.h>
#include <string.h>
#include <stdlib.h>

//~~
// Member Functions : entity_state_PDU

entity_state_PDU::entity_state_PDU()
{
 reset_PDU();
}

entity_state_PDU::~entity_state_PDU()
{ }

void entity_state_PDU::reset_PDU()
{
 protocol_version = '\0';
 exercise_ID = '\0';
 PDU_Type = '\0';
 protocol_family = '\0';
 time_stamp = 0;
 length = 0;
 header_padding = 0;
 sender_entityID[0] = 0;
 sender_entityID[1] = 0;
 sender_entityID[2] = 0;
 sender_force_ID = '\0';
 num_articulation_params = '\0';
 entity_kind = '\0';
 domain = '\0';
 country = 0;
 category = '\0';
 sub_category = '\0';
 specific = '\0';
 extra = '\0';
 sender_location[0] = 0;

85

 sender_location[1] = 0;
 sender_location[2] = 0;
 sender_orientation[0] = 0;
 sender_orientation[1] = 0;
 sender_orientation[2] = 0;
 flag = 0;
 alt_entity_kind = '\0';
 alt_entity_kind_PRESENT = 0;
 alt_domain = '\0';
 alt_domain_PRESENT = 0;
 alt_country = 0;
 alt_country_PRESENT = 0;
 alt_category = '\0';
 alt_category_PRESENT = 0;
 alt_sub_category = '\0';
 alt_sub_category_PRESENT = 0;
 alt_specific = '\0';
 alt_specific_PRESENT = 0;
 alt_extra = '\0';
 alt_extra_PRESENT = 0;
 sender_linear_velocity[0] = 0.0;
 sender_linear_velocity[1] = 0.0;
 sender_linear_velocity[2] = 0.0;
 sender_linear_velocity_PRESENT = 0;
 sender_appearance = 0;
 sender_appearance_PRESENT = 0;
 DeadReckAlgorithm = '\0';
 DeadReckAlgorithm_PRESENT = 0;
 OtherParams[0] = '\0';
 OtherParams[1] = '\0';
 OtherParams[2] = '\0';
 OtherParams[3] = '\0';
 OtherParams[4] = '\0';
 OtherParams[5] = '\0';
 OtherParams[6] = '\0';
 OtherParams[7] = '\0';
 OtherParams[8] = '\0';
 OtherParams[9] = '\0';
 OtherParams[10] = '\0';
 OtherParams[11] = '\0';
 OtherParams[12] = '\0';
 OtherParams[13] = '\0';
 OtherParams[14] = '\0';
 OtherParams_PRESENT = 0;
 sender_linear_accel[0] = 0.0;
 sender_linear_accel[1] = 0.0;
 sender_linear_accel[2] = 0.0;
 sender_linear_accel_PRESENT = 0;
 sender_angular_vel[0] = 0.0;
 sender_angular_vel[1] = 0.0;
 sender_angular_vel[2] = 0.0;

86

 sender_angular_vel_PRESENT = 0;
 character_set = '\0';
 character_set_PRESENT = 0;
 markings[0] = '\0';
 markings[1] = '\0';
 markings[2] = '\0';
 markings[3] = '\0';
 markings[4] = '\0';
 markings[5] = '\0';
 markings[6] = '\0';
 markings[7] = '\0';
 markings[8] = '\0';
 markings[9] = '\0';
 markings[10] = '\0';
 markings_PRESENT = 0;
 capabilities = 0;
 capabilities_PRESENT = 0;

}

entity_state_PDU::write_PDU()
{

// This is the hacked together code that allows the SDM/MP
// PDU Classes to use the DIS 2.0.3 Network Library.
//
// This is for testing purposes only and should be removed
// prior to using the OpenNPSNET network manager.

 EntityStatePDU epdu;

 // Set the present variables and set the bit mask.
 set_present();
 set_bit_field();

 //fill in the parameters of an entity state PDU, this assumes there
 //are no articulated parameters
 //ID and Type

 epdu.entity_state_header.protocol_version = protocol_version;
 epdu.entity_state_header.exercise_ident = exercise_ID;
 epdu.entity_state_header.type = PDU_Type;
 epdu.entity_state_header.padding_8 = protocol_family;
 epdu.entity_state_header.time_stamp = time_stamp;
 epdu.entity_state_header.length = length;
 epdu.entity_state_header.padding_16 = flag; // stuff the flag here
 // so it fits!
 epdu.entity_id.address.site = sender_entityID[0];
 epdu.entity_id.address.host = sender_entityID[1];
 epdu.entity_id.entity = sender_entityID[2];

87

 epdu.force_id = sender_force_ID;
 epdu.num_articulat_params = num_articulation_params;

 // Fill in the entity kind information
 epdu.entity_type.entity_kind = entity_kind;
 epdu.entity_type.domain = domain;
 epdu.entity_type.country = country;
 epdu.entity_type.category = category;
 epdu.entity_type.subcategory = sub_category;
 epdu.entity_type.specific = specific;
 epdu.entity_type.extra = extra;

 // Fill in the alternate entity kind information
 if(alt_entity_kind_PRESENT == 1)
 epdu.alt_entity_type.entity_kind = alt_entity_kind;
 if(alt_domain_PRESENT == 1)
 epdu.alt_entity_type.domain = alt_domain;
 if(alt_country_PRESENT == 1)
 epdu.alt_entity_type.country = alt_country;
 if(alt_category_PRESENT == 1)
 epdu.alt_entity_type.category = alt_category;
 if(alt_sub_category_PRESENT == 1)
 epdu.alt_entity_type.subcategory = alt_sub_category;
 if(alt_specific_PRESENT == 1)
 epdu.alt_entity_type.specific = alt_specific;
 if(alt_extra_PRESENT == 1)
 epdu.alt_entity_type.extra = alt_extra;

 //How fast is it going
 if(sender_linear_velocity_PRESENT == 1)
 {
 epdu.entity_velocity.x = sender_linear_velocity[0];
 epdu.entity_velocity.y = sender_linear_velocity[1];
 epdu.entity_velocity.z = sender_linear_velocity[2];
 }

 //Where we are
 epdu.entity_location.x = sender_location[0];
 epdu.entity_location.y = sender_location[1];
 epdu.entity_location.z = sender_location[2];

 //How we are facing
 epdu.entity_orientation.psi = sender_orientation[0];
 epdu.entity_orientation.theta = sender_orientation[1];
 epdu.entity_orientation.phi = sender_orientation[2];

 //what we look like
 if(sender_appearance_PRESENT == 1)
 epdu.entity_appearance = sender_appearance;

88

 //project our movement
 if(DeadReckAlgorithm_PRESENT == 1)
 epdu.dead_reckon_params.algorithm = DeadReckAlgorithm;

 //Send out dr accelerations and velocities
 if(sender_linear_accel_PRESENT == 1)
 {
 epdu.dead_reckon_params.linear_accel[0] = sender_linear_accel[0];
 epdu.dead_reckon_params.linear_accel[1] = sender_linear_accel[1];
 epdu.dead_reckon_params.linear_accel[2] = sender_linear_accel[2];
 }

 // We don't calculate these at the moment but for the future
 if(sender_angular_vel_PRESENT == 1)
 {
 epdu.dead_reckon_params.angular_velocity[0] =
sender_angular_vel[0];
 epdu.dead_reckon_params.angular_velocity[1] =
sender_angular_vel[1];
 epdu.dead_reckon_params.angular_velocity[2] =
sender_angular_vel[2];
 }

 if(character_set_PRESENT == 1)
 epdu.entity_marking.character_set = character_set;

 if(markings_PRESENT == 1)
 strncpy ((char *)epdu.entity_marking.markings,(char *)markings, 10);

 if(capabilities_PRESENT == 1)
 epdu.capabilities = capabilities;

 if (net->write_pdu((char *)&epdu,EntityStatePDU_Type) == FALSE)
printf("net_write() failed\n");

 cout << "Wrote Entity State PDU " << pdu_length()
 << " bytes long." << endl << endl;

 print_PDU();
 cout << endl << endl;
 return 0;
}

int entity_state_PDU::read_PDU()
{

// This is the hacked together code that allows the SDM/MP
// PDU Classes to use the DIS 2.0.3 Network Library.
//
// This is for testing purposes only and should be removed
// prior to using the OpenNPSNET network manager.

89

 entity_state_PDU es_pdu;

 char *pdu;
 int swap_bufs;
 EntityStatePDU *epdu;
 PDUType type;
 sender_info pdu_sender_info;

 net->read_pdu(&pdu, &type, pdu_sender_info, swap_bufs);

 // If there is a PDU process it based on the PDU type. We only care
 // about ESPDUs. All others are ignored.
 if (pdu != NULL)
 {
 switch(type)
 {
 case (EntityStatePDU_Type):
 epdu = (EntityStatePDU *)pdu;

 // Get the sender information
 //lookup_name_from_address(pdu_sender_info);

 // Stuff the ESPDU into an entity node if it is
 // from a platform or life form. Don't care
 // about munitions or other ESPDUs.
 if((epdu->entity_type.entity_kind == 1) ||
 (epdu->entity_type.entity_kind == 3))
 {
 // Create the stuff needed to read the bit mask.
 unsigned short mask = 1 << 15;
 unsigned short flag_check = 0;

 //fill in the parameters of an entity state PDU,
 //this assumes there
 //are no articulated parameters
 //ID and Type
 protocol_version = epdu->entity_state_header.
 protocol_version;
 exercise_ID = epdu->entity_state_header.exercise_ident;
 PDU_Type = epdu->entity_state_header.type;
 protocol_family = epdu->entity_state_header.padding_8;
 time_stamp = epdu->entity_state_header.time_stamp;
 flag = epdu->entity_state_header.padding_16;
 flag_check = epdu->entity_state_header.padding_16;
 header_padding = 0;

 sender_entityID[0] = epdu->entity_id.address.site;
 sender_entityID[1] = epdu->entity_id.address.host;
 sender_entityID[2] = epdu->entity_id.entity;

90

 sender_force_ID = epdu->force_id;
 num_articulation_params = epdu->num_articulat_params;

 // Fill in the entity kind information
 entity_kind = epdu->entity_type.entity_kind;
 domain = epdu->entity_type.domain;
 country = epdu->entity_type.country;
 category = epdu->entity_type.category;
 sub_category = epdu->entity_type.subcategory;
 specific = epdu->entity_type.specific;
 extra = epdu->entity_type.extra;

 // Fill in the alternate entity kind information

 if(flag_check & mask ? 1 : 0)
 {
 alt_entity_kind = epdu->alt_entity_type.entity_kind;
 alt_entity_kind_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)
 {
 alt_domain = epdu->alt_entity_type.domain;
 alt_domain_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)
 {
 alt_country = epdu->alt_entity_type.country;
 alt_country_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)
 {
 alt_category = epdu->alt_entity_type.category;
 alt_category_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)
 {
 alt_sub_category = epdu->alt_entity_type.subcategory;
 alt_sub_category_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)

91

 {
 alt_specific = epdu->alt_entity_type.specific;
 alt_specific_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)
 {
 alt_extra = epdu->alt_entity_type.extra;
 alt_extra_PRESENT = 1;
 }
 flag_check <<= 1;

 //How fast is it going
 if(flag_check & mask ? 1 : 0)
 {
 sender_linear_velocity[0] = epdu->entity_velocity.x;
 sender_linear_velocity[1] = epdu->entity_velocity.y;
 sender_linear_velocity[2] = epdu->entity_velocity.z;
 sender_linear_velocity_PRESENT = 1;
 }
 flag_check <<= 1;

 //Where we are
 sender_location[0] = epdu->entity_location.x;
 sender_location[1] = epdu->entity_location.y;
 sender_location[2] = epdu->entity_location.z;

 //How we are facing
 sender_orientation[0] = epdu->entity_orientation.psi;
 sender_orientation[1] = epdu->entity_orientation.theta;
 sender_orientation[2] = epdu->entity_orientation.phi;

 //what we look like
 if(flag_check & mask ? 1 : 0)
 {
 sender_appearance = epdu->entity_appearance;
 sender_appearance_PRESENT = 1;
 }
 flag_check <<= 1;

 //project our movement
 if(flag_check & mask ? 1 : 0)
 {
 DeadReckAlgorithm = epdu->dead_reckon_params.algorithm;
 DeadReckAlgorithm_PRESENT = 1;
 }
 flag_check <<= 1;

 //Send out dr accelerations and velocities
 if(flag_check & mask ? 1 : 0)

92

 {
 sender_linear_accel[0] = epdu-
>dead_reckon_params.linear_accel[0];
 sender_linear_accel[1] = epdu-
>dead_reckon_params.linear_accel[1];
 sender_linear_accel[2] = epdu-
>dead_reckon_params.linear_accel[2];
 sender_linear_accel_PRESENT = 1;
 }
 flag_check <<= 1;

 // We don't calculate these at the moment but for the future
 if(flag_check & mask ? 1 : 0)
 {
 sender_angular_vel[0] = epdu->dead_reckon_params.
 angular_velocity[0];
 sender_angular_vel[1] = epdu->dead_reckon_params.
 angular_velocity[1];
 sender_angular_vel[2] = epdu->dead_reckon_params.
 angular_velocity[2];
 sender_angular_vel_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)
 {
 character_set = epdu->entity_marking.character_set;
 character_set_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)
 {
 strncpy ((char *)markings,
 (char *)epdu->entity_marking.markings, 10);
 markings_PRESENT = 1;
 }
 flag_check <<= 1;

 if(flag_check & mask ? 1 : 0)
 {
 capabilities = epdu->capabilities;
 capabilities_PRESENT = 1;
 }
 flag_check <<= 1;

 length = pdu_length();

 // Print the PDU
 cout << "Entity State PDU of " << pdu_length()
 << " bytes recieved." << endl << endl;

93

 print_PDU();
 cout << endl << endl;
 }

 break;

 default:
 break;
 }
 }
 return 0;
}

int entity_state_PDU::pdu_length()
{
 unsigned short length = 0;

 length += sizeof(protocol_version);
 length += sizeof(exercise_ID);
 length += sizeof(PDU_Type);
 length += sizeof(protocol_family);
 length += sizeof(time_stamp);
 length += sizeof(length);
 length += sizeof(header_padding);
 length += sizeof(sender_entityID[0]);
 length += sizeof(sender_entityID[1]);
 length += sizeof(sender_entityID[2]);
 length += sizeof(sender_force_ID);
 length += sizeof(num_articulation_params);
 length += sizeof(entity_kind);
 length += sizeof(domain);
 length += sizeof(country);
 length += sizeof(category);
 length += sizeof(sub_category);
 length += sizeof(specific);
 length += sizeof(extra);
 length += sizeof(sender_location[0]);
 length += sizeof(sender_location[1]);
 length += sizeof(sender_location[2]);
 length += sizeof(sender_orientation[0]);
 length += sizeof(sender_orientation[1]);
 length += sizeof(sender_orientation[2]);
 length += sizeof(flag);

 if(alt_entity_kind_PRESENT == 1)
 {
 length += sizeof(alt_entity_kind);
 }

 if(alt_domain_PRESENT == 1)
 {

94

 length += sizeof(alt_domain);
 }

 if(alt_country_PRESENT == 1)
 {
 length += sizeof(alt_country);
 }

 if(alt_category_PRESENT == 1)
 {
 length += sizeof(alt_category);
 }

 if(alt_sub_category_PRESENT == 1)
 {
 length += sizeof(alt_sub_category);
 }

 if(alt_specific_PRESENT == 1)
 {
 length += sizeof(alt_specific);
 }

 if(alt_extra_PRESENT == 1)
 {
 length += sizeof(alt_extra);
 }

 if(sender_linear_velocity_PRESENT == 1)
 {
 length += sizeof(sender_linear_velocity[0]);
 length += sizeof(sender_linear_velocity[1]);
 length += sizeof(sender_linear_velocity[2]);
 }

 if(sender_appearance_PRESENT == 1)
 {
 length += sizeof(sender_appearance);
 }

 if(DeadReckAlgorithm_PRESENT == 1)
 {
 length += sizeof(DeadReckAlgorithm);
 }

 if(OtherParams_PRESENT == 1)
 {
 length += sizeof(OtherParams[0]);
 length += sizeof(OtherParams[1]);
 length += sizeof(OtherParams[2]);
 length += sizeof(OtherParams[3]);

95

 length += sizeof(OtherParams[4]);
 length += sizeof(OtherParams[5]);
 length += sizeof(OtherParams[6]);
 length += sizeof(OtherParams[7]);
 length += sizeof(OtherParams[8]);
 length += sizeof(OtherParams[9]);
 length += sizeof(OtherParams[10]);
 length += sizeof(OtherParams[11]);
 length += sizeof(OtherParams[12]);
 length += sizeof(OtherParams[13]);
 length += sizeof(OtherParams[14]);
 }

 if(sender_linear_accel_PRESENT == 1)
 {
 length += sizeof(sender_linear_accel[0]);
 length += sizeof(sender_linear_accel[1]);
 length += sizeof(sender_linear_accel[2]);
 }
 if(sender_angular_vel_PRESENT == 1)
 {
 length += sizeof(sender_angular_vel[0]);
 length += sizeof(sender_angular_vel[1]);
 length += sizeof(sender_angular_vel[2]);
 }
 if(character_set_PRESENT == 1)
 {
 length += sizeof(character_set);
 }

 if(markings_PRESENT == 1)
 {
 length += sizeof(markings[0]);
 length += sizeof(markings[1]);
 length += sizeof(markings[2]);
 length += sizeof(markings[3]);
 length += sizeof(markings[4]);
 length += sizeof(markings[5]);
 length += sizeof(markings[6]);
 length += sizeof(markings[7]);
 length += sizeof(markings[8]);
 length += sizeof(markings[9]);
 length += sizeof(markings[10]);
 }
 if(capabilities_PRESENT == 1)
 {
 length += sizeof(capabilities);
 }
 return length;
}

96

void entity_state_PDU::set_bit_field()
{
 unsigned short mask = 0;

 if(alt_entity_kind_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 15;
 flag |= mask;
 }

 if(alt_domain_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 14;
 flag |= mask;
 }

 if(alt_country_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 13;
 flag |= mask;
 }

 if(alt_category_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 12;
 flag |= mask;
 }

 if(alt_sub_category_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 11;
 flag |= mask;
 }

 if(alt_specific_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 10;
 flag |= mask;
 }

 if(alt_extra_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 9;
 flag |= mask;

97

 }

 if(sender_linear_velocity_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 8;
 flag |= mask;
 }

 if(sender_appearance_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 7;
 flag |= mask;
 }

 if(DeadReckAlgorithm_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 6;
 flag |= mask;
 }

 if(OtherParams_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 5;
 flag |= mask;
 }

 if(sender_linear_accel_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 4;
 flag |= mask;
 }

 if(sender_angular_vel_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 3;
 flag |= mask;
 }

 if(character_set_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 2;
 flag |= mask;
 }

98

 if(markings_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 1;
 flag |= mask;
 }

 if(capabilities_PRESENT == 1)
 {
 mask = 0;
 mask = 1 << 0;
 flag |= mask;
 }

}

void entity_state_PDU::print_PDU()
{
 set_bit_field();

 cout << "protocol_version = " << (int)protocol_version << endl;
 cout << "exercise_ID = " << (int)exercise_ID << endl;
 cout << "PDU_Type = " << (int)PDU_Type << endl;
 cout << "protocol_family = " << (int)protocol_family << endl;
 cout << "time_stamp = " << time_stamp << endl;
 cout << "length = " << length << endl;
 cout << "header_padding = " << header_padding << endl;
 cout << "sender_entityID[0] = " << sender_entityID[0] << endl;
 cout << "sender_entityID[1] = " << sender_entityID[1] << endl;
 cout << "sender_entityID[2] = " << sender_entityID[2] << endl;
 cout << "sender_force_ID = " << (int)sender_force_ID << endl;
 cout << "num_articulation_params = "
 << (int)num_articulation_params << endl;
 cout << "entity_kind = " << (int)entity_kind << endl;
 cout << "domain = " << (int)domain << endl;
 cout << "country = " << country << endl;
 cout << "category = " << (int)(int)category << endl;
 cout << "sub_category = " << (int)sub_category << endl;
 cout << "specific = " << (int)specific << endl;
 cout << "extra = " << (int)extra << endl;
 cout << "sender_location[0] = " << sender_location[0] << endl;
 cout << "sender_location[1] = " << sender_location[1] << endl;
 cout << "sender_location[2] = " << sender_location[2] << endl;
 cout << "sender_orientation[0] = " << sender_orientation[0] << endl;
 cout << "sender_orientation[1] = " << sender_orientation[1] << endl;
 cout << "sender_orientation[2] = " << sender_orientation[2] << endl;

 display_bits(flag);

99

 if(alt_entity_kind_PRESENT == 1)
 {
 cout << "alt_entity_kind = " << (int)alt_entity_kind << endl;
 }
 else
 {
 cout << "alt_entity_kind is not Present!" << endl;
 }
 if(alt_domain_PRESENT == 1)
 {
 cout << "alt_domain = " << (int)alt_domain << endl;
 }
 else
 {
 cout << "alt_domain is not Present!" << endl;
 }
 if(alt_country_PRESENT == 1)
 {
 cout << "alt_country = " << alt_country << endl;
 }
 else
 {
 cout << "alt_country is not Present!" << endl;
 }
 if(alt_category_PRESENT == 1)
 {
 cout << "alt_category = " << (int)alt_category << endl;
 }
 else
 {
 cout << "alt_category is not Present!" << endl;
 }
 if(alt_sub_category_PRESENT == 1)
 {
 cout << "alt_sub_category = " << (int)alt_sub_category << endl;
 }
 else
 {
 cout << "alt_sub_category is not Present!" << endl;
 }
 if(alt_specific_PRESENT == 1)
 {
 cout << "alt_specific = " << (int)alt_specific << endl;
 }
 else
 {
 cout << "alt_specific is not Present!" << endl;
 }
 if(alt_extra_PRESENT == 1)
 {
 cout << "alt_extra = " << (int)alt_extra << endl;

100

 }
 else
 {
 cout << "alt_extra is not Present!" << endl;
 }
 if(sender_linear_velocity_PRESENT == 1)
 {
 cout << "sender_linear_velocity[0] = "
 << sender_linear_velocity[0] << endl;
 cout << "sender_linear_velocity[1] = "
 << sender_linear_velocity[1] << endl;
 cout << "sender_linear_velocity[2] = "
 << sender_linear_velocity[2] << endl;
 }
 else
 {
 cout << "sender_linear_velocity is not Present!" << endl;
 }
 if(sender_appearance_PRESENT == 1)
 {
 cout << "sender_appearance = " << sender_appearance << endl;
 }
 else
 {
 cout << "sender_appearance is not Present!" << endl;
 }
 if(DeadReckAlgorithm_PRESENT == 1)
 {
 cout << "DeadReckAlgorithm = " << (int)DeadReckAlgorithm << endl;
 }
 else
 {
 cout << "DeadReckAlgorithm is not Present!" << endl;
 }
 if(OtherParams_PRESENT == 1)
 {
 cout << "OtherParams[0] = " << (int)OtherParams[0] << endl;
 cout << "OtherParams[1] = " << (int)OtherParams[1] << endl;
 cout << "OtherParams[2] = " << (int)OtherParams[2] << endl;
 cout << "OtherParams[3] = " << (int)OtherParams[3] << endl;
 cout << "OtherParams[4] = " << (int)OtherParams[4] << endl;
 cout << "OtherParams[5] = " << (int)OtherParams[5] << endl;
 cout << "OtherParams[6] = " << (int)OtherParams[6] << endl;
 cout << "OtherParams[7] = " << (int)OtherParams[7] << endl;
 cout << "OtherParams[8] = " << (int)OtherParams[8] << endl;
 cout << "OtherParams[9] = " << (int)OtherParams[9] << endl;
 cout << "OtherParams[10] = " << (int)OtherParams[10] << endl;
 cout << "OtherParams[11] = " << (int)OtherParams[11] << endl;
 cout << "OtherParams[12] = " << (int)OtherParams[12] << endl;
 cout << "OtherParams[13] = " << (int)OtherParams[13] << endl;
 cout << "OtherParams[14] = " << (int)OtherParams[14] << endl;

101

 }
 else
 {
 cout << "OtherParams is not Present!" << endl;
 }
 if(sender_linear_accel_PRESENT == 1)
 {
 cout << "sender_linear_accel[0] = " << sender_linear_accel[0]
 << endl;
 cout << "sender_linear_accel[1] = " << sender_linear_accel[1]
 << endl;
 cout << "sender_linear_accel[2] = " << sender_linear_accel[2]
 << endl;
 }
 else
 {
 cout << "sender_linear_accel is not Present!" << endl;
 }
 if(sender_angular_vel_PRESENT == 1)
 {
 cout << "sender_angular_vel[0] = " << sender_angular_vel[0]
 << endl;
 cout << "sender_angular_vel[1] = " << sender_angular_vel[1]
 << endl;
 cout << "sender_angular_vel[2] = " << sender_angular_vel[2]
 << endl;
 }
 else
 {
 cout << "sender_angular_vel is not Present!" << endl;
 }
 if(character_set_PRESENT == 1)
 {
 cout << "character_set = " << (int)character_set << endl;
 }
 else
 {
 cout << "character_set is not Present!" << endl;
 }
 if(markings_PRESENT == 1)
 {
 cout << "markings[0] = " << markings[0] << endl;
 cout << "markings[1] = " << markings[1] << endl;
 cout << "markings[2] = " << markings[2] << endl;
 cout << "markings[3] = " << markings[3] << endl;
 cout << "markings[4] = " << markings[4] << endl;
 cout << "markings[5] = " << markings[5] << endl;
 cout << "markings[6] = " << markings[6] << endl;
 cout << "markings[7] = " << markings[7] << endl;
 cout << "markings[8] = " << markings[8] << endl;
 cout << "markings[9] = " << markings[9] << endl;

102

 cout << "markings[10] = " << markings[10] << endl;
 }
 else
 {
 cout << "markings is not Present!" << endl;
 }
 if(capabilities_PRESENT == 1)
 {
 cout << "capabilities = " << capabilities << endl;
 }
 else
 {
 cout << "capabilities is not Present!" << endl;
 }

}

void entity_state_PDU::display_bits(unsigned short value)
{
 int length = (sizeof(unsigned short) * 8);
 unsigned short cx, displayMask = 1 << 15;

 for(cx = 1; cx <= length; cx++)
 {
 cout << (value & displayMask ? '1' : '0');
 value <<= 1;

 }

 cout << endl;
}

void entity_state_PDU::set_present()
{
 if(alt_entity_kind != '\0')
 {
 alt_entity_kind_PRESENT = 1;
 }
 if(alt_domain != '\0')
 {
 alt_domain_PRESENT = 1;
 }
 if(alt_country != 0)
 {
 alt_country_PRESENT = 1;
 }
 if(alt_category != '\0')
 {
 alt_category_PRESENT = 1;
 }
 if(alt_sub_category != '\0')

103

 {
 alt_sub_category_PRESENT = 1;
 }
 if(alt_specific != '\0')
 {
 alt_specific_PRESENT = 1;
 }
 if(alt_extra != '\0')
 {
 alt_extra_PRESENT = 1;
 }
 if(sender_linear_velocity[0] < 0.0 ||
 sender_linear_velocity[0] > 0.0)
 {
 sender_linear_velocity_PRESENT = 1;
 }
 if(sender_linear_velocity[1] < 0.0 ||
 sender_linear_velocity[1] > 0.0)
 {
 sender_linear_velocity_PRESENT = 1;
 }
 if(sender_linear_velocity[2] < 0.0 ||
 sender_linear_velocity[2] > 0.0)
 {
 sender_linear_velocity_PRESENT = 1;
 }
 if(sender_appearance != 0)
 {
 sender_appearance_PRESENT = 1;
 }
 if(DeadReckAlgorithm != '\0')
 {
 DeadReckAlgorithm_PRESENT = 1;
 }
 if(OtherParams[0] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[1] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[2] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[3] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[4] != '\0')

104

 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[5] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[6] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[7] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[8] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[9] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[10] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[11] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[12] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[13] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(OtherParams[14] != '\0')
 {
 OtherParams_PRESENT = 1;
 }
 if(sender_linear_accel[0] < 0.0 || sender_linear_accel[0] > 0.0)
 {
 sender_linear_accel_PRESENT = 1;
 }
 if(sender_linear_accel[1] < 0.0 || sender_linear_accel[1] > 0.0)
 {
 sender_linear_accel_PRESENT = 1;
 }

105

 if(sender_linear_accel[2] < 0.0 || sender_linear_accel[2] > 0.0)
 {
 sender_linear_accel_PRESENT = 1;
 }
 if(sender_angular_vel[0] < 0.0 || sender_angular_vel[0] > 0.0)
 {
 sender_angular_vel_PRESENT = 1;
 }
 if(sender_angular_vel[1] < 0.0 || sender_angular_vel[1] > 0.0)
 {
 sender_angular_vel_PRESENT = 1;
 }
 if(sender_angular_vel[2] < 0.0 || sender_angular_vel[2] > 0.0)
 {
 sender_angular_vel_PRESENT = 1;
 }
 if(character_set != '\0')
 {
 character_set_PRESENT = 1;
 }
 if(markings[0] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[1] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[2] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[3] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[4] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[5] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[6] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[7] != '\0')
 {
 markings_PRESENT = 1;

106

 }
 if(markings[8] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[9] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(markings[10] != '\0')
 {
 markings_PRESENT = 1;
 }
 if(capabilities != 0)
 {
 capabilities_PRESENT = 1;
 }

}

// Function: ==
// Purpose: Overloaded equality comparison operator

int entity_state_PDU::operator==(const entity_state_PDU & e)
{

if ((sender_entityID[0] == 0) ||
 (sender_entityID[0] == e.sender_entityID[0]))
{
if ((sender_entityID[1] == 0) ||

 (sender_entityID[1] ==
e.sender_entityID[1]))

{
if ((sender_entityID[2] == 0) ||

 (sender_entityID[2] ==
e.sender_entityID[2]))

return 1;
}

}
return 0;

}

// Function: !=
// Purpose: Overloaded inequality comparison operator

int entity_state_PDU::operator!=(const entity_state_PDU & e)
{

if ((sender_entityID[0] == 0) ||
 (sender_entityID[0] == e.sender_entityID[0]))
{

107

if ((sender_entityID[1] == 0) ||
 (sender_entityID[1] ==

e.sender_entityID[1]))
{
if ((sender_entityID[2] == 0) ||

 (sender_entityID[2] ==
e.sender_entityID[2]))

return 0;
}

}
return 1;

}

108

109

LIST OF REFERENCES

BRU95 Brutzman, Donald, Macedonia, Michael and Zyda, Michael,Internetwork
Infrastructure Requirements for virtual Environments, submitted to the First VRML
Symposium, 1995.

CANTER95 Canterbury, Michael,An Automated Approach to Distributed Interactive
Simulation (DIS) Protocol Entity Development, Master’s Thesis, Naval Postgraduate
School, Monterey, California, September 1995.

COHEN94a Cohen, Danny,NG-DIS-PDU: The Next Generation of DIS-PDU,
Proceedings of the 10th DIS Conference, Orlando, Florida, March 1994.

COHEN94b Cohen, Danny,DIS - Back to Basics,Proceedings of the 11th DIS
Conference, Orlando, Florida, September 1994.

COHEN95 Cohen, Danny and Kirsh, Moshe,SDM/MP: Self Defined Messages with
Multiple Presentations,Proceedings of the 13th DIS Conference, Orlando, Florida,
September 1995.

COHEN96a Cohen, Danny and Kirsh, Moshe,A SDM/MP Approach to DIS-3,
Proceedings of the 14th DIS Conference, Orlando, Florida, March 1996.

COHEN96b Cohen, Danny and Kirsh, Moshe,A Proposal for DIS++ (Based on SDM/
MP), Perceptronics, Woodland Hills, California, March 1996.

DIS94 DIS Steering Committee,The DIS Vision - A Map to the Future of Distributed
Simulation, Institute for Simulation and Training, Orlando, Florida, May 1994.

DURLACH95 Durlach, Nathaniel I. and Mavor, Anne S.,Virtual Reality: Scientific and
Technological Challenges,National Academy Press, Washington, D.C. 1995.

IEEE1278 Institute of Electrical and Electronics Engineers, International Standard, ANSI/
IEEE Std 1278-1993,Standard for Information Technology, Protocols for Distributed
Interactive Simulation,March 1993.

LEVI92 Levine, John R., Mason, Tony, Brown, Doug,LEX & YACC, O’Reilly &
Associates, Sebastopol, California, 1992.

MAC94 Macedonia, Michael R., Zyda, Michael J., Pratt, David R., Barham, Paul T.,
Zeswitz, Steven,NPSNET: A Network Software Architecture for Large Scale Virtual
Environments, Presence, 3, 4, Winter 1994.

MAC95a Macedonia, Michael R.,A Network Architecture for Large Scale Virtual
Environments, Dissertation, Naval Postgraduate School, Monterey, California, June 1995.

110

MAC95b Macedonia, Michael R., Zyda, Michael J., Pratt, David R., Barham, Paul T.,
Exploiting Reality with Multicast Groups,IEEE Computer Graphics and Applications,
September 1995.

MOR95 Morrison, John, The VR-Link, Networked Virtual Environment Software
Infrastructure, Presence, 4,2, Summer 95.

SCHUG95 Schug, Klaus H.,DIS NG - A Flexible Protocol for all Simulation
Applications, Proceedings of the 13th DIS Conference, Orlando, 1995.

WHITE95 White, James E., Telescript Technology: Mobile Agents, General Magic White
Paper, Mountain View California, 1995.

ZES93 Zeswitz, Steven R.,NPSNET: Integration of Distributed Interactive Simulation
(DIS) Protocol for Communication Architecture and Information Interchange,Master’s
Thesis, Naval Postgraduate School, Monterey, California, September 1993.

111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Ted Lewis, Code CS/Lt 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr. Michael Zyda, Code CS/Zk 6
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr. Don Brutzman, Code UW/Br 1
Interdisciplinary Academic Group
Naval Postgraduate School
Monterey, CA 93943

6. Prof John Falby, Code CS/Fa 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. CPT Steven W. Stone 1
9810 Christina Drive
Riverview, FL 33569

